
www.ecography.org

ECOGRAPHY

Ecography

Page 1 of 14

This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited.

Subject Editor: Dominique Gravel 
Editor-in-Chief:  
Dominique Gravel 
Accepted 13 May 2025

doi: 10.1002/ecog.07680

2025

1–14

2025: e07680

© 2025 The Author(s). Ecography published by John Wiley & Sons Ltd on behalf of Nordic 
Society Oikos

Globally, forest disturbances caused by herbivorous insects and plant pathogens (i.e. 
biotic disturbances) have increased since the 1990s, a trend linked in part to climate 
warming. With increases in biotic disturbance activity, an emerging ecological phe-
nomenon has been documented: biotic disturbance ‘hotspots’, or areas where two or 
more biotic disturbance agents co-occur in space and time. Biotic disturbance hotspots 
may have important implications for forest resilience, particularly if they erode mecha-
nisms of post-disturbance forest recovery. The factors leading to hotspot occurrence, 
however, remain poorly understood. We characterized the patterns and drivers of 
biotic disturbance hotspots occurring from 2000 to 2020 across three broad forested 
regions in the western United States (US; the Southern Rockies, Middle Rockies, and 
Cascades). Using Bayesian spatio-temporal models, we evaluated whether hotspots 
can be predicted from predisposing factors expected to increase forest susceptibility to 
biotic disturbance (i.e. forest composition, topography, and average climate), as well 
as inciting factors known to trigger individual bark beetle and pathogen outbreaks 
(i.e. annual weather). Biotic disturbance hotspots exhibited distinct spatio-temporal 
patterns and trends within each region. Forest structure and composition were the 
strongest and most consistent drivers of hotspots. Other factors varied in their impor-
tance by region, reflecting regional differences in biophysical context. Relative to the 
predictor variables included in our models, estimated spatio-temporal random effects 
were more closely correlated with model predictions, suggesting that dynamic factors 
such as outbreak spread strongly shape patterns of biotic disturbance hotspots. Our 
results illustrate the widespread nature of biotic disturbance hotspots across western 
US coniferous forests and demonstrate the importance of forest structure and regional 
outbreak dynamics in anticipating hotspots at regional scales. These findings provide 
a deeper understanding of interacting forest disturbances and have important impli-
cations for the resilience of forests during a period marked by continued increases in 
disturbance activity.
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Introduction

Forest disturbances play a critical role in shaping the struc-
ture and function of temperate forests worldwide, along with 
the ecosystem services these forests provide (Thom and Seidl 
2016). Globally, biotic disturbance activity (i.e. outbreaks of 
insects and plant pathogens) has been increasing since the 
late 1990s (Kautz et al. 2017), linked in part to the sensitiv-
ity of biotic agents to changing climate (Bentz et al. 2010, 
Weed et al. 2013, Seidl et al. 2017). While region- and spe-
cies-specific trends vary, biotic disturbance activity is expected 
to continue to increase as climates become warmer and drier 
(Bentz et al. 2010, Kautz et al. 2017, McNichol et al. 2022, 
Lantschner and Corley 2023). 

As disturbance regimes change in response to chang-
ing climate, interactions among disturbances are increas-
ingly important to consider (Turner 2010, Buma 2015, 
Burton  et  al. 2020). Multiple disturbances can interact via 
the legacies of prior disturbances affecting subsequent distur-
bances or ecological patterns and processes (Peterson 2002). 
Some disturbances can interact to produce compound effects 
that may alter mechanisms or rates of ecosystem recovery 
(Paine et al. 1998). In the western United States (US), one 
disturbance interaction emerging in recent decades is the 
occurrence of biotic disturbance ‘hotspots’, areas where two 
or more distinct biotic disturbances overlap in space and time 
(Harvey et al. 2023). Between 1997 and 2019, ~ 5–18% of 
the area affected by biotic disturbance each year in western 
US forests were hotspots (Harvey et al. 2023). Yet, the causes 
and consequences of biotic disturbance hotspots remain 
poorly understood. 

Biotic disturbance hotspots may have important implica-
tions for forest resilience, particularly if they result in com-
pound or synergistic effects (Paine et al. 1998). Tree-killing 
bark beetles and many plant pathogens are specialists, feed-
ing on or infecting a specific host tree genus or species, and 
in the case of bark beetles, also preferentially attacking older 
and larger host trees (Raffa et  al. 2008). In forests affected 
by a single biotic disturbance, the selective mortality of par-
ticular species and sizes of trees often results in abundant 
surviving non-host and/or understory trees that facilitate 
rapid post-disturbance growth responses (Veblen et al. 1991, 
Buonanduci  et  al. 2023), providing continuity in forest 
functional attributes such as live carbon stocks (Pfeifer et al. 
2011). In forests affected by biotic disturbance hotspots, how-
ever, the synchronous mortality of multiple host tree species 
has the potential to dampen compensatory growth responses 
that might otherwise provide stability in forest function 
(Harvey et al. 2023). These effects are likely to be exacerbated 
in areas subject to increasing climate stress, further decreas-
ing rates of forest recovery and increasing the likelihood that 
mechanisms of forest resilience could break down.

Biotic disturbance and associated tree mortality is a com-
plex process, with numerous factors shaping both the activity 
and effects of biotic agents ultimately contributing to tree 
death. As a conceptual framework, both ‘predisposing’ and 
‘inciting’ factors can drive biotic disturbance activity (Manion 

1981). Long-term or persistent factors, including host avail-
ability, forest structure, and average climatic conditions, can 
predispose locations to biotic disturbance activity (Raffa et al. 
2008). Short-term factors, including annual weather condi-
tions, can then incite biotic disturbance activity through 
various mechanisms. For example, warm temperatures below 
supraoptimal temperature thresholds affect insect physiology, 
leading to increased survivorship, reproduction, and repro-
ductive synchrony, all of which can facilitate insect outbreaks 
(Bentz et al. 1991, Hansen et al. 2001, Tobin et al. 2014). 
Warm and dry conditions also stress potential host trees, 
reducing resources allocated to defense (Mattson and Haack 
1987, Gaylord et al. 2013, Huang et al. 2020). Predisposing 
and inciting factors can both shape biotic disturbance activ-
ity, with their relative influence being context dependent.

Spatial overlaps in biotic disturbances may occur due to 
shared drivers, mechanistic links between agents, or random 
chance. Temporally synchronous hotspots may occur when 
individual biotic agents respond to shared broad-scale driv-
ers, such as multiple bark beetle outbreaks occurring syn-
chronously in response to regional increases in temperature 
(i.e. the ‘Moran effect’; Moran 1953, Peltonen et al. 2002, 
Bentz et al. 2010, Chapman et al. 2012, Preisler et al. 2012, 
Hart  et  al. 2017). Conversely, temporally lagged hotspots 
may occur due to mechanistic links between disturbance 
agents, such as when defoliating insects reduce tree vigor, 
thereby increasing host tree susceptibility to subsequent bark 
beetle attacks (Hadley and Veblen 1993, Cole et al. 2022). 
Even in the absence of shared or linked mechanisms, some 
overlap of biotic disturbance agents is expected to occur ran-
domly due to an overall increase in biotic disturbance activity 
within a finite forested area. Despite the increasing poten-
tial for overlap and interaction of biotic disturbance agents, 
the broad-scale factors associated with biotic disturbance 
hotspots remain understudied. 

Here, we characterize the spatio-temporal patterns and 
drivers of biotic disturbance hotspots across three broad for-
ested regions in the western US that span differing gradients 
of forest types and bioclimatic conditions. We focus on tem-
porally synchronous hotspots of tree-killing biotic agents that 
target a variety of host tree species and that are not expected 
to be mechanistically linked (Table 1). We examine predis-
posing factors expected to increase forest susceptibility to 
biotic disturbance (i.e. forest composition, topography, and 
climate), as well as inciting factors known to trigger individ-
ual bark beetle and pathogen outbreaks (i.e. annual weather 
conditions; Table 2). Using this framework, we ask: Can the 
occurrence of biotic disturbance hotspots be predicted from 
predisposing and inciting factors known to favor individual 
biotic disturbance agents?

Methods

Study regions
We studied three broad forested regions within the western 
US: the Southern Rockies, Middle Rockies, and Cascades. 
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Table 1. Tree-killing biotic agents and multi-species complexes used to identify biotic disturbance hotspots. aSubalpine fir mortality complex 
includes the effects of western balsam bark beetle activity, Armillaria root rot, and other mortality agents (Harvey et al. 2021). We treated 
western balsam bark beetle and subalpine fir mortality complex as separate agents when identifying hotspots; however, because our defini-
tion of hotspots required that two or more distinct host tree species be affected, we do not expect that doing so inflated our detection of 
hotspots. bFive-needle pine decline includes the effects of mountain pine beetle activity and white pine blister rust. We treated mountain 
pine beetle and five-needle pine decline as separate agents when identifying hotspots; however, as noted above, we do not expect that doing 
so inflated our detection of hotspots.

Common name Scientific name Host tree species

Bark beetles   
Western pine beetle Dendroctonus brevicomis Ponderosa pine
Jeffrey pine beetle Dendroctonus jeffreyi Jeffrey pine
Mountain pine beetle Dendroctonus ponderosae All pine species; primarily lodgepole, ponderosa,  

western white, sugar, limber, and whitebark pines
Douglas-fir beetle Douglas-fir
Spruce beetle Dendroctonus rufipennis Engelmann spruce, Sitka spruce, Brewer spruce
Western balsam bark beetle Dryocoetes confusus Primarily subalpine fir; occasionally other true firs,  

Engelmann spruce, and lodgepole pine
Pinyon ips Ips confusus Pinyon pine
Pine engraver Ips pini All pine species; primarily ponderosa, lodgepole, and Jeffrey pines
Ips engraver beetles Ips spp. All pine species
Silver fir beetle Pseudohylesinus sericeus Primarily Pacific silver fir; occasionally other true firs,  

Douglas-fir, western hemlock, and Sitka spruce
True fir bark beetles Scolytus spp. True firs
Douglas-fir engraver Scolytus unispinosus Douglas-fir
Fir engraver Scolytus ventralis Primarily grand fir, white fir, red fir, and noble fir; occasionally 

Douglas-fir, subalpine fir, and western hemlock
Multi-agent mortality ‘complexes’
Subalpine fir mortality complexa Subalpine fir
Five-needle pine declineb Five-needle pines; primarily limber, Rocky Mountain  

bristlecone, and whitebark pines
Pinyon pine mortality Pinyon pine

These regions are all mountainous, dominated by coni-
fer forests, and comparable in their spatial extents (each 
134 000–144 000 km2), but span a range of forest types 
and bioclimatic conditions (Rollins 2009). The topography, 
climate, and forest types characterizing these regions are 
described in the Supporting information. 

Biotic disturbance data
Forest insect and disease impacts are mapped annually 
through aerial detection surveys (ADS) conducted by the 
USDA Forest Service. During ADS, trained observers are 
flown systematically over forested areas in small aircraft; 
observers delineate areas of forest damage on maps while 
characterizing the type of damage (i.e. identifying both host 
tree species and disturbance agent). Ground-truthing has 
found that binary (presence/absence) ADS classifications are 
approximately 70% accurate when aggregated to 200–1000 
m raster cells, which is generally considered sufficient for 
broad-scale monitoring (Johnson and Ross 2008, Backsen 
and Howell 2013, Coleman et al. 2018).

We obtained ADS data within each of our study regions 
for the period 1999–2021 from the USDA Forest Health 
Protection program database (USDA 2022a). We filtered the 
data to include 13 tree-killing Scolytinae species and three 
multi-agent mortality complexes among which mechanis-
tic links are not expected (Table 1). Because damage from 
these agents is typically detected one year following host tree 
infestation or infection (when foliage of attacked trees begins 

to fade), we attributed ADS detections in a given year to 
the preceding year (i.e. detection data for 1999–2021 were 
attributed to 1998–2020; Meddens et al. 2012, Backsen and 
Howell 2013). We rasterized the ADS polygon data to 510-m 
cells containing binary indicators for presence/absence of 
each disturbance agent, with zeros assigned only to cells that 
were surveyed but lacked detection. A 510-m resolution was 
selected as a moderately coarse grain to improve ADS clas-
sification accuracy while remaining compatible with finer-
grained 30-m datasets used in our analysis. All rasters were 
generated in the USGS contiguous USA Albers projection 
using the ‘raster’ package (Hijmans et al. 2022) in R (R Core 
Team 2023).

To quantify hotspot occurrence, we identified spatio-
temporal overlaps in disturbance activity attributed to the 
16 biotic agents included in our study (Table 1). First, we 
defined a hotspot as any 510-m raster cell in which dam-
age caused by ≥ 2 biotic agents and affecting ≥ 2 host tree 
species was detected within a three-year window, including 
the focal year and prior two years. We used a relatively short 
three-year window to define hotspots because our goal was 
to identify temporally synchronous hotspots that may result 
in compound or synergistic effects, following Harvey et  al. 
(2023). For a cell to be designated a hotspot in a given 
focal year, at least one of the co-occurring agents must have 
been detected within that focal year. To increase the com-
putational efficiency of our models, we aggregated these 
moderate-resolution (510 m) rasters by a factor of 10, with 
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each aggregated 5.1-km cell expressing a binary indicator for 
hotspot detection in one or more 510-m subcells (hereafter 
referred to as hotspot occurrence) as well as a count of 510-m 
subcells in which hotspots were detected (hereafter referred to 
as hotspot prevalence). To express hotspot prevalence at the 
5.1-km scale as a proportion, we also quantified the number 
of subcells with the potential for hotspot detection. Subcells 
had the potential for hotspot detection if they were surveyed 
every year of the three-year hotspot window and were likely 
to contain ≥ 2 co-occurring host tree species (based on host 
tree data described in the following section). After account-
ing for the three-year hotspot detection window, our final 
dataset included focal years 2000–2020. 

Potential predictors of hotspots
As potential predictors of hotspots, we considered predis-
posing factors expected to increase forest susceptibility to 
biotic disturbance as well as inciting factors known to trig-
ger individual biotic disturbance events (Table 2; Supporting 
information). 

Forest composition was characterized using the USDA 
Forest Service Individual Tree Species Parameter (ITSP) 

database (USDA 2022b), which provides species-specific 
basal area rasters modeled from USFS Forest Inventory and 
Analysis plot data; 30-m Landsat satellite imagery; and local 
climate, terrain, and soils. The ITSP data, which are pub-
licly distributed at a 240-m resolution, represent tree spe-
cies conditions across the US in approximately 2002 (Krist 
2014), thus corresponding to the beginning of our biotic 
disturbance dataset. We obtained basal area rasters for each 
potential host tree species occurring in our study regions 
from the ITSP database (Supporting information). We con-
verted these basal area rasters to binary presence/absence 
rasters for each species, where we defined presence as > 1 
m2 ha−1 host basal area following Tutland et al. (2023). We 
converted all species-specific rasters from a 240-m resolu-
tion to a 510-m resolution by first disaggregating to a 30-m 
resolution and then aggregating to a 510-m resolution, with 
aggregated basal area and presence quantified as the average 
and maximum, respectively, of 30-m subcells. We then cal-
culated total host basal area and richness within each 510-m 
cell by summing all host species basal area and presence 
rasters, respectively. Finally, we aggregated host tree pres-
ence, basal area, and richness to a 5.1-km scale, where host 

Table 2. Potential predictor variables for hotspot occurrence and prevalence, and hypothesized associations.

Category Predictor variable Description
Temporally 
variable?  

Expected direction of 
effect and justification

Predisposing factors
Forest 

composition
Host tree co-occurrence Number of 510-m subcells 

containing ≥ 2 potential  
host tree species

No + Increased potential for 
hotspot occurrence in 
areas where host trees 
tend to co-occur

 Host tree basal area  
(m2 ha−1)

Average total basal area of host 
species within subcells containing 
≥ 2 potential host tree species

No + Increased susceptibility 
to bark beetle outbreak

 Host tree richness Average host species richness within 
subcells containing ≥ 2 potential 
host tree species

No + Increased susceptibility 
to co-occurring biotic 
agents

Topography Heat load index Index of potential direct incident 
radiation

No + Increased moisture stress 
for host trees

 Topographic wetness 
index

Index of the long-term moisture 
availability of a given site in the 
landscape

No - Decreased moisture 
stress for host trees

Average 
climate

Annual actual 
evapotranspiration  
(AET; mm)

Average annual AET, expressed as 
30-year normals (1991–2020)

No + Increased vegetation 
productivity

 Summer maximum  
vapor pressure deficit 
(VPD; hPa)

Average daily maximums for 
June–August, expressed as 30-year 
normals (1991–2020)

No + Increased moisture stress 
for host trees

 Winter minimum 
temperature (˚C)

Average daily minimums for 
December–February, expressed as 
30-year normals (1991–2020)

No + Increased overwinter 
survival for bark 
beetles

Inciting factors
Weather Summer maximum  

vapor pressure  
deficit (VPD; hPa)

Average daily maximums for June–
August, averaged over the 3-year 
hotspot detection window and 
expressed as deviations from 
30-year normals

Yes + Increased moisture stress 
for host trees

 Winter minimum 
temperature (˚C)

Average daily minimums for 
December–February, averaged 
over the 3-year hotspot detection 
window and expressed as 
deviations from 30-year normals

Yes + Increased overwinter 
survival for bark 
beetles
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co-occurrence was quantified as the number of 510-m sub-
cells containing two or more host tree species, and basal area 
and richness were averaged across those subcells containing 
two or more host tree species.

Topography was characterized using a 30-m resolution 
digital elevation model obtained from the USGS LANDFIRE 
database (Rollins 2009). Heat load index, an index of poten-
tial direct incident radiation ranging from 0 (coolest) to 1 
(hottest), was calculated using the ‘spatialEco’ package (Evans 
2021, R Core Team 2023) in R following McCune and Keon 
(2002) and McCune (2007). Topographic wetness index, 
an index of long-term moisture availability, was calculated 
in ArcMap (ESRI 2019) according to Beven and Kirkby 
(1979). Higher values of the topographic wetness index indi-
cate topographically wetter areas and lower values indicate 
topographically drier areas. Both indices were aggregated to a 
5.1-km scale by averaging all 30-m subcells.

As an index of site productivity and moisture stress, cli-
matic water balance data were obtained from the TerraClimate 
database (Abatzoglou et al. 2018). We obtained actual evapo-
transpiration (AET) rasters at a resolution of 1/24 degree 
(approximately 4 km) on a monthly time step for the period 
1991–2020. AET represents the amount of water lost from a 
surface due to evaporation and transpiration and is used as a 
proxy for plant productivity (Stephenson 1990). We summed 
monthly actual evapotranspiration by calendar year and aver-
aged the annual rasters to derive a 30-year climate normal. 
Finally, we rescaled all rasters from their native 1/24-degree 
resolution by first resampling to a 510-m resolution and then 
aggregating to a 5.1-km resolution.

Additional climate and weather data were obtained 
from the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) database (PRISM Climate Group 
2022). We obtained 30-year (1991–2020) climate normals 
and annual weather values at a resolution of 1/24 degree 
(approximately 4 km), which we rescaled to 5.1-km cells via 
resampling and aggregation, as described above. Summer 
maximum vapor pressure deficit (VPD) was calculated by 
averaging values for June–August of a given year, and win-
ter minimum temperature was calculated by averaging val-
ues for December of the prior year through February of the 
focal year. Annual weather values were converted to annual 
anomalies by subtracting the corresponding 30-year climate 
normals, and anomalies were averaged across the three-year 
window corresponding to the temporal window used for 
hotspot detection (e.g. for focal year 2007, anomalies were 
averaged for years 2005–2007).

Statistical analysis
We used Bayesian spatio-temporal regression models, fit sep-
arately to each study region, to evaluate the relative influence 
of predisposing and inciting factors on hotspot occurrence 
and prevalence at the 5.1-km scale. The discrete response 
(count of subcells in which hotspots were detected) for cell 
location s and year t was modeled as a zero-inflated (‘hurdle’ 
model) binomial random variable Yst. The probability density 
function takes the following form:

P Y

p Y

p Y N
N

st

st st

st
st st st� � �

� �

�

1 0

1 0

,

( | , )
( |

if

Binomial
Binomial

�

sst
if

, )
,

�st
stY

�

�
�

�

�
� �

�

�
�

�
� 0

Here, pst is the probability of hotspot occurrence (i.e. hotspot 
detection in at least one subcell), Nst is the number of subcells 
with the potential for hotspot detection, and πst is the success 
probability in the binomial function used for positive counts. 
The probability of occurrence (Bernoulli) and positive preva-
lence count (binomial) were estimated as separate processes, 
each linked to covariates and random effects as follows:

logit pst t st st� � � � �� �bX

logit � � �st t st st� � � � �qX

Here, the linear predictors for occurrence and prevalence 
are modeled as functions of time-varying intercepts γt and 
ηt respectively, covariates Xst, and spatio-temporal random 
effects ∈st and ωst, respectively. The time-varying intercepts 
are modeled as year-specific random walks as follows (for γt, 
with ηt following an analogous form):

� � ��t t∼ −Normal 1,� �
The spatio-temporal random effects are modeled as stationary 
autoregressive Gaussian random fields as follows (for ∈st, with 
ωst following an analogous form):

� �� � �s t s t st, ,� �� � �1 1
21

� �s t, ,� �� �1 0~ MVN

� ��st ~ MVN 0,� �

Here, ϕ (0 < ϕ < 1) is the temporal autoregression param-
eter for the Gaussian random field. The spatial covariance 
matrix �� is modeled using a Matérn covariance function 
parameterized by marginal standard deviation σδ and practi-
cal range r (the distance at which the spatial correlation drops 
to approximately 0.1) (Lindgren et al. 2011).

We fit these models in a Bayesian framework using the 
integrated nested Laplace approximation (INLA) and sto-
chastic partial differential equation (SPDE) approaches 
(Lindgren  et  al. 2011, Blangiardo and Cameletti 2015) 
(Supporting information). We used penalized complexity pri-
ors for the marginal standard deviations and practical ranges 
of the Gaussian random fields, which shrink the marginal 
variance toward zero and the practical range toward infin-
ity (Fuglstad  et  al. 2019). The penalized complexity prior 
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approach avoids spatial overfitting and can reduce the poten-
tial for spatial confounding between autocorrelated covari-
ates and spatio-temporal random effects (Mäkinen  et  al. 
2022). We used uninformative priors for all other parameters 
(Krainski  et  al. 2019). Models were fit using the ‘R-INLA’ 
package (www.r-inla.org) in R.

We fit models using only data from those 5.1-km cells 
within which ≥ 25% of subcells had the potential for hotspot 
detection (i.e. ≥ 25% of subcells both [a] contained ≥ 2 host 
tree species and [b] were surveyed each year of the three-year 
hotspot detection window). All potential predictor variables, 
with the exception of host co-occurrence, were included as 
covariates in both the Bernoulli model of hotspot occurrence 
and binomial model of hotspot prevalence. The prevalence of 
host co-occurrence is in many cases equal to Nst, the number 
of subcells with the potential for hotspot detection (though 
the two are not always equal, with Nst accounting not only 
for host co-occurrence but also for whether each subcell was 
surveyed each year). Since Nst is explicitly included in our 
binomial model of hotspot prevalence, we excluded the prev-
alence of host co-occurrence as a covariate in that model. We 
checked for multicollinearity among covariates using vari-
ance inflation factors (Zuur et al. 2010).

To enable comparison of the magnitude of coefficients 
within each regional model, we standardized all covariates 
within each regional dataset by subtracting their means and 
dividing by their standard deviations. A covariate was con-
sidered a statistically important predictor if the 95% credible 
interval for the coefficient did not include zero. Because we 
expected the effects of inciting factors (i.e. annual weather 
anomalies) might vary with predisposing climate, we consid-
ered interaction terms between weather anomalies and their 
corresponding climate normals. We added interaction terms 
to each model only if they were statistically important pre-
dictors and they improved model fit (i.e. decreased model 
Deviance Information Criterion by > 10). We calculated 
randomized quantile residuals for our zero-inflated binomial 
models following Bai et al. (2021) and validated each model 
using standard regression diagnostics. To verify inferences 
drawn from our models were not affected by spatial autocor-
relation, we evaluated residual autocorrelation using Moran’s 
I (Cliff and Ord 1981) and empirical variograms calculated 
using the ‘gstat’ package in R (Pebesma 2004).

Results

Observed hotspots
Hotspot occurrence (presence/absence) and prevalence (the 
proportion of subcells in which hotspots were detected; a 
measure of local hotspot magnitude) exhibited distinct spatial 
and temporal patterns within each study region (Fig. 1–3). 
Across all 5.1-km cells with the potential for hotspot detec-
tion, annual rates of hotspot occurrence ranged from 3 to 
38% in the Southern Rockies, from < 1 to 49% in the Middle 
Rockies, and from 10 to 28% in the Cascades (Fig. 1–3). 
Within those 5.1-km cells in which hotspot occurrence was 

detected, average annual hotspot prevalence ranged from 3 to 
14% in the Southern Rockies, from 2 to 15% in the Middle 
Rockies, and from 5 to 16% in the Cascades (Fig. 1–3). In 
both the Southern Rockies and Middle Rockies, hotspot 
occurrence and prevalence peaked between 2003 and 2008, 
whereas occurrence and prevalence in the Cascades peaked 
around 2009 and again from 2014 to 2017 (Fig. 1–3).

The individual biotic agents and multi-species com-
plexes contributing to hotspot occurrence varied by region 
(Supporting information). In the Southern Rockies, mountain 
pine beetle, subalpine fir mortality, and spruce beetle were the 
most common agents contributing to hotspot occurrence; at 
the 510-m scale, mountain pine beetle was detected in 49% 
of hotspots, while subalpine fir mortality and spruce beetle 
were detected in 28% and 27% of hotspots, respectively. In 
the Middle Rockies, mountain pine beetle, five-needle pine 
decline, and subalpine fir mortality were the most common 
agents, being detected in 67%, 21%, and 19% of hotspots, 
respectively. In the Cascades, fir engraver, mountain pine 
beetle, and western pine beetle were most common and were 
detected in 53%, 41%, and 23% of hotspots, respectively.

Effects of predisposing and inciting factors
Hotspot occurrence (presence/absence) and prevalence (local 
magnitude) were affected by each of the predisposing factors 
considered in our analysis, with the strength and direction 
of effects varying by region (Fig. 4; Supporting informa-
tion). Forest composition had the strongest and most con-
sistent effect on hotspot occurrence and prevalence; across 
study regions, hotspot occurrence consistently increased with 
host co-occurrence (number of subcells containing two or 
more host tree species; a measure of the extent of host spe-
cies overlap), and hotspot occurrence and prevalence both 
consistently increased with total host basal area and richness 
(Fig. 4). Decreases in hotspot occurrence and prevalence were 
consistently linked with increases in normal summer VPD 
and topographic heat load, though the magnitude of the 
effect of topographic heat load was small (Fig. 4).

All other predisposing factors considered in our analy-
sis had variable effects across regions. Hotspot occur-
rence decreased with increasing topographic wetness in the 
Southern Rockies and Cascades, whereas hotspot prevalence 
increased with topographic wetness in the Middle Rockies. 
Hotspots decreased with increasing normal AET in the 
Middle Rockies but strongly increased with normal AET 
in the Cascades; in the Southern Rockies, effects of AET 
were mixed, with hotspot occurrence increasing but hotspot 
prevalence decreasing with increasing AET (Fig. 4). Finally, 
hotspot occurrence and prevalence decreased with normal 
winter minimum temperature in the Southern Rockies, 
whereas normal winter temperature had no detectable effect 
in the Middle Rockies (Fig. 4). Winter temperature normals 
could not be included in the models for the Cascades due to 
collinearity with AET (Fig. 4).

Across study regions, inciting factors had the strongest 
effects in the Southern Rockies (Fig. 4). Hotspot occurrence 
and prevalence increased with increasing winter temperature 
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anomalies in the Southern Rockies, with the negative inter-
action between normals and anomalies suggesting that 
winter temperature anomalies have weaker effects in loca-
tions with warmer normal winter temperatures (Fig. 4). 
Similarly, hotspot prevalence increased with summer VPD 
anomalies in the Southern Rockies, with the positive interac-
tion between normals and anomalies suggesting that sum-
mer VPD anomalies have stronger effects in locations with 
greater normal summer VPD (Fig. 4). We detected no effect 
of inciting factors on hotspot occurrence in either the Middle 
Rockies or Cascades (Fig. 4). Hotspot prevalence decreased 
with increasing winter temperature anomalies in the Middle 
Rockies, increased with winter temperature anomalies in the 
Cascades, and increased with summer VPD anomalies in 
both regions, though the magnitudes of these effects were all 
relatively modest (Fig. 4).

Spatio-temporal random effects
Compared to the fixed effects estimated in our models, the 
temporal and spatio-temporal random effects were greater in 
magnitude and more closely correlated with model-predicted 
hotspot occurrence and prevalence (Fig. 5; Supporting infor-
mation). Odds ratios associated with a one standard devia-
tion increase in estimated random effects ranged from 11.3 

to 30.1 for hotspot occurrence and from 2.7 to 3.8 for preva-
lence. In contrast, odds ratios associated with a one standard 
deviation increase in estimated fixed effects only ranged from 
2.3 to 4.5 for hotspot occurrence and from 1.8 to 2.2 for 
prevalence. Overall, odds ratios for random effects were 1.5–
13.1 times greater than those for corresponding fixed effects 
(Supporting information).

The temporal and spatio-temporal random effects esti-
mated in our models reflect the distinct patterns and trends 
in hotspots across our study regions (Supporting informa-
tion). Peaks in the time-varying random intercepts largely 
corresponded with peaks in the observed hotspots data 
(Supporting information). The estimated practical range r 
(distance at which spatial autocorrelation approaches zero) 
varied from 55 to 85 km across regions for hotspot occurrence 
and from 35 to 40 km across regions for hotspot prevalence. 
Spatial patterns of hotspots were strongly persistent from 
year to year, with the temporal autoregression parameter ϕ 
for the spatial random fields varying from 0.88 to 0.93 across 
all models. Our models accounted for most of the spatio-
temporal correlation in our data, with empirical variograms 
of model residuals suggesting some residual autocorrelation, 
but only at very short distances (i.e. ≤ 10 km) relative to the 
extents of our study regions (Supporting information). 

Figure 1. Hotspots in the Southern Rockies region, US (EPA Level III Ecoregion 21). (a) Observed spatio-temporal patterns of hotspot 
occurrence (presence/absence) and prevalence (local magnitude) within 5.1-km cells with the potential for hotspot detection. Surveyed cells 
in which zero hotspots were detected are shown in light gray; for those cells in which ≥ 1 hotspots were detected, hotspot prevalence is 
expressed as the proportion of 510-m subcells in which hotspots were detected. Thin gray lines represent US state boundaries. (b) Observed 
temporal patterns of hotspot occurrence. (c) Observed temporal patterns of hotspot prevalence within those 5.1-km cells in which ≥ 1 
hotspots were detected. Note the log-transformed scales in (a) and (c). 
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Discussion

Our study investigates the patterns, trends, and drivers of 
biotic disturbance hotspots across three forested regions in 
the western US. Biotic disturbance hotspots occurred widely 
throughout the western US in the early part of the 21st cen-
tury (2000–2020), with distinct patterns characterizing each 
of our three study regions. Using a spatio-temporal modeling 
approach, we found that predisposing and inciting factors 
both contributed to hotspot occurrence, with forest compo-
sition and structure being consistent drivers and other effects 
varying with the unique biophysical characteristics of each 
region. Relative to the predictor variables included in our 
analysis, we found that the random spatio-temporal effects 
estimated in our models were stronger and more closely cor-
related with hotspot predictions, suggesting that dynamic fac-
tors such as outbreak spread strongly shape patterns of biotic 
disturbance hotspots. These findings provide an understand-
ing of interacting biotic disturbance agents in the western US 
during a period when climate and biotic disturbance regimes 
were both changing.

Hotspots occur widely and have implications for 
forest resilience
The widespread nature of biotic disturbance hotspots across 
the western US carries important implications for forest 
resilience in a period of increasing biotic disturbance activ-
ity. Biotic disturbance hotspots are an emerging ecological 
phenomenon (Harvey et al. 2023), and this study provides 
a foundational understanding of their spatial and temporal 
patterns in recent decades. While interannual trends varied 
regionally, each of our study regions experienced years in 
which hotspots were detected within ≥ 28% of 5.1-km cells 
with the potential for hotspot occurrence, with annual occur-
rence rates as high as 49% observed in the Middle Rockies. 
Forest disturbances caused by a single host-specific agent are 
often followed by robust compensatory responses facilitated 
by increased growth of surviving non-host trees (Veblen et al. 
1991, Buonanduci  et  al. 2023). These compensatory 
responses underpin forest recovery and continuity in forest 
function (Romme et al. 1986), serving as important mecha-
nisms of forest resilience. In forests affected by biotic distur-
bance hotspots, however, compensatory responses could be 

Figure 2. Hotspots in the Middle Rockies region, US (EPA Level III Ecoregion 17). (a) Observed spatio-temporal patterns of hotspot occur-
rence (presence/absence) and prevalence (local magnitude) within 5.1-km cells with the potential for hotspot detection. Surveyed cells in 
which zero hotspots were detected are shown in light gray; for those cells in which ≥ 1 hotspots were detected, hotspot prevalence is 
expressed as the proportion of 510-m subcells in which hotspots were detected. Thin gray lines represent US state boundaries. (b) Observed 
temporal patterns of hotspot occurrence. (c) Observed temporal patterns of hotspot prevalence within those 5.1-km cells in which ≥ 1 
hotspots were detected. Note the log-transformed scales in (a) and (c).
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Figure 3. Hotspots in the Cascades region, US (EPA Level III Ecoregions 4, 9, and 77). (a) Observed spatio-temporal patterns of hotspot 
occurrence (presence/absence) and prevalence (local magnitude) within 5.1-km cells with the potential for hotspot detection. Surveyed cells 
in which zero hotspots were detected are shown in light gray; for those cells in which ≥ 1 hotspots were detected, hotspot prevalence is 
expressed as the proportion of 510-m subcells in which hotspots were detected. Thin gray lines represent US state boundaries. (b) Observed 
temporal patterns of hotspot occurrence. (c) Observed temporal patterns of hotspot prevalence within those 5.1-km cells in which ≥ 1 
hotspots were detected. Note the log-transformed scales in (a) and (c).

Figure 4. Effects of covariates on hotspot occurrence and prevalence. Dots represent posterior means and horizontal lines represent 95% 
credible intervals. Closed circles represent statistically important predictors and open circles represent predictors that are not statistically 
important. Blank spaces indicate covariates not evaluated in a particular model. The effects for each predictor are per one standard deviation 
within each region-specific dataset. AET, actual evapotranspiration; VPD, vapor pressure deficit.
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eroded due to the spatially synchronous mortality of multiple 
host tree species. Compared to forest disturbances caused by 
single biotic agents, overall tree mortality may not necessarily 
be more severe in areas affected by hotspots (Tutland et al. 
2023); however, the mechanisms and rates of forest recov-
ery are likely to be altered (Harvey  et  al. 2023). Thus, the 
widespread nature of biotic disturbance hotspots has impor-
tant implications for forest resilience as climate continues to 
change and biotic disturbance activity continues to increase.

Forest composition and structure are consistent 
drivers of biotic disturbance hotspots, while other 
factors vary with biophysical context
Biotic disturbance hotspots are strongly and consistently 
driven by the abundance, richness, and spatial distributions 
of host trees. Even after constraining our analysis to those 
areas where hotspots could potentially be detected (i.e. sur-
veyed areas where two or more potential host tree species 
were likely to be present), hotspot occurrence and prevalence 
increased with host basal area and richness, suggesting that 
forested areas characterized by a greater amount of host bio-
mass and number of host tree species are most susceptible 
to biotic disturbance hotspots. Individually, biotic agents 
are most likely to occur where host tree basal area is high 
(Shore et al. 2000, Fettig et al. 2007), and it logically follows 
that the likelihood of overlapping biotic agents is greatest 
where multiple host species co-occur and host basal area is 

high. Forest types vary strongly along elevational gradients in 
each of our study regions, thus our finding that hotspots var-
ied with climate normals also likely reflects the climatic niches 
of individual host tree species and thus the influence of host 
species distributions on hotspot occurrence. For example, the 
most prevalent biotic agents contributing to hotspot occur-
rence in our study regions were those known to attack pine, 
fir, and spruce trees (Table 1, Supporting information). Pine, 
fir, and spruce largely tend to co-occur at higher elevations 
in our study regions, where climate is characterized by lower 
summer VPD and winter temperature. Thus, our finding that 
hotspot occurrence increased in areas characterized by lower 
winter temperature and summer VPD could be attributed to 
the increasing overlap of pine/spruce/fir at higher elevations.

The effects of other predisposing and inciting factors 
were variable, reflecting the unique biophysical character-
istics of each region. For example, the variable effects of 
annual AET (a proxy for plant productivity) across regions 
likely stems from their differing levels of productivity. The 
western Cascades are some of the most productive for-
est ecosystems in the world (Waring and Franklin 1979, 
Watson et al. 2015, Spies et al. 2018), with greater annual 
AET and host basal area than both the Middle and Southern 
Rockies (Supporting information). It is possible that the dif-
fering effects of AET observed across our study regions are 
related to the complex growth–defense tradeoffs that occur 
in host plants (Herms and Mattson 1992, Kane and Kolb 

Figure 5. Illustrative comparison of (a) observed hotspot occurrence, (b) predicted probability of hotspot occurrence, (c) fixed effects of all 
covariates, and (d) random temporal and spatio-temporal effects. Hotspot occurrence in the Southern Rockies in 2007 is shown here as a 
representative example. Note the visual correspondence between (a), (b), and (d), reflecting the strong influence of spatio-temporal random 
effects in our models.
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2010, Vázquez-González et al. 2020). Since tree-killing bark 
beetles prefer mature hosts with thicker phloem (Amman 
1969), high growth rates may increase infestation probability 
(Cooper  et  al. 2018) in areas where productivity is gener-
ally high. Conversely, in areas where productivity is gener-
ally more limited, growth–defense tradeoffs may be amplified 
(Vázquez-González et al. 2020), and host trees may allocate 
more resources to defense rather than growth. This tradeoff 
could potentially explain the positive association between 
annual AET and hotspots that we observed in the Cascades, a 
highly productive region, versus the negative and mixed asso-
ciations observed in the less-productive Middle and Southern 
Rockies (Watson et al. 2015). 

Similarly, our finding that inciting factors (i.e. annual 
weather anomalies) were most important for predicting 
hotspots in the Southern Rockies likely stems from the dif-
fering climate conditions characterizing each of the study 
regions. For example, winter minimum temperatures gener-
ally increase from the Middle Rockies to the Southern Rockies 
to the Cascades (Supporting information). Concurrently, 
overwintering survivorship of tree-killing bark beetles, which 
as a group are a dominant biotic disturbance agent across all 
regions, is generally lowest in the Middle Rockies and highest 
in the Cascades, with the Southern Rockies falling in-between 
(Bentz et al. 2010). Annual weather anomalies are likely to 
have a greater influence on biotic disturbance activity in areas 
where climate straddles important temperature thresholds 
for bark beetle survival and reproduction (Raffa et al. 2008, 
Bentz et al. 2010). Thus, it is possible that weather anoma-
lies could be more likely to incite hotspot occurrence in the 
Southern Rockies where climate conditions suitable to bark 
beetle outbreak fall within an intermediate range and where 
proximity to temperature thresholds is therefore important. 
Although winter minimum temperatures in the Southern 
Rockies were not likely cold enough during our study period 
to be lethal to mountain pine beetle (the most common agent 
contributing to hotspots in this region), warm winter tem-
peratures may also allow for earlier emergence and potential 
decreases in the duration of subsequent beetle generations, 
thus providing favorable conditions for beetle population 
growth (Chapman et al. 2012, Bentz et al. 2014).

Dynamic factors, including outbreak spread, play an 
important role in shaping biotic disturbance 
hotspots
The temporal and spatio-temporal random effects estimated 
in our models contributed strongly to model predictions and 
closely mirrored observed hotspot patterns and trends, sug-
gesting that dynamic factors such as outbreak spread play 
an important role in shaping biotic disturbance hotspots. 
Biotic disturbances are stochastic processes, with local and 
regional population pressure of biotic agents strongly shaping 
the dynamics of bark beetle and plant pathogen outbreaks 
(Raffa et al. 2008, Preisler et al. 2012, Linnakoski et al. 2019, 
Howe  et  al. 2021). The strong spatio-temporal correlation 
in our dataset and high year-to-year persistence of hotspots 
suggest that biotic disturbance hotspots are also stochastic 

processes that can emerge as a by-product of the dynamic 
nature of individual outbreaks. We found that temporal and 
spatio-temporal random effects were more closely correlated 
with hotspot occurrence and prevalence than the covariates 
included in our models, suggesting that the strongest predic-
tor of hotspot occurrence at any given location and time is 
whether other hotspots occurred nearby or in a previous year.

Each of the three study regions was affected by broad-scale, 
synchronous bark beetle outbreaks and increasing wildfire 
activity during our study period (2000–2020), likely contrib-
uting to the patterns and trends in hotspots that we observed. 
In particular, regional outbreaks of mountain pine beetle have 
been well-documented across the western US in the early part 
of the 21st century (Raffa et al. 2008, Chapman et al. 2012, 
Preisler et al. 2012), and mountain pine beetle was a primary 
contributor to hotspot occurrence across our study regions. 
The temporal trends estimated in our models, particularly 
the peaks in hotspots occurring from 2003 to 2008 in the 
Southern and Middle Rockies (Supporting information), 
mirror the rapid growth followed by decline in mountain pine 
beetle populations observed in these regions (Chapman et al. 
2012, Meddens et al. 2012). Rapid depletion of available live 
host biomass with outbreak progression often plays a key role 
in ending regional-scale outbreaks (Raffa et al. 2008), as suffi-
cient live host trees are necessary to sustain bark beetle popu-
lations. Similarly, the spatial legacies of wildfire can strongly 
shape the likelihood and patterns of bark beetle and pathogen 
outbreaks, either through host tree injury that may increase 
host susceptibility to subsequent colonization or infestation, 
or through host tree mortality that may decrease the avail-
ability of live host biomass required for subsequent outbreaks 
(Simler-Williamson et al. 2021, Howe et al. 2024). Because 
species-specific and temporally explicit tree biomass esti-
mates are not currently available at the spatial resolutions and 
extents modeled in our study, we were only able to include 
one static estimate of host tree basal area in our models. Thus, 
while we were not able to explicitly account for the loss in 
live host biomass caused by regional-scale outbreak or wild-
fire activity, the random effects estimated in our models effec-
tively capture these trends.

Study limitations and directions for future research
Aerial detection surveys provide critical data for broad-scale 
mapping of biotic forest disturbances but are not without 
limitations. Despite efforts to standardize data collection 
procedures (McConnell et al. 2000), aerial sketchmapping is 
inherently subjective in nature (Johnson and Wittwer 2008). 
Semi-automated satellite remote sensing approaches offer 
an improvement over ADS data in terms of spatio-temporal 
coverage and resolution (Rodman  et  al. 2021). However, 
ADS data perform better with respect to damage attribution 
and offer sufficient accuracy at coarse scales, thus remaining 
the best available option for monitoring interactions among 
biotic disturbance agents across regional extents.

We took a broad approach in our analysis, lumping 
numerous tree-killing biotic agents and host tree species. By 
design, our results reflect the patterns and drivers of biotic 
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disturbance hotspots generally, rather than specific combina-
tions of biotic agents. Some biotic disturbance agents may 
be more likely to co-occur in space and time (e.g. agents tar-
geting commonly co-occurring host trees and responding to 
similar environmental conditions), while others may be less 
likely to co-occur (e.g. agents targeting less commonly co-
occurring host trees, responding to different environmental 
conditions, and/or functioning as competitors). Therefore, 
further research could focus on specific combinations of 
agents that may be of interest, such as the mountain pine bee-
tle and spruce beetle, two species that occur widely through-
out North America, tend to co-occur due to the extensive 
overlap of their host genera, respond similarly to many cli-
matic drivers, and can each cause widespread tree mortality 
during regional outbreaks (Bentz et al. 2022, Harvey et al. 
2023, Andrus et al. 2025). Additionally, we focused on tem-
porally synchronous overlaps of agents that are not expected 
to be mechanistically linked. Future research could also focus 
on temporally lagged hotspots that may be occurring due to 
expected or novel mechanistic links. 

Finally, our study focused on regional-scale patterns and 
trends. We identified biotic disturbance hotspots at a coarse 
spatial resolution (i.e. co-occurrence within 510-m or 26-ha 
grid cells, further aggregated to 5.1-km or 2600-ha grid cells) 
to reduce model complexity and enable modeling these pat-
terns over broad spatial extents. Our methodology harnessed 
a variety of data products to represent potential drivers of 
hotspots (i.e. forest composition, topography, climate, and 
weather), which required aggregating these data to a com-
mon spatial scale. The process of aggregating or ‘coarse-grain-
ing’ data has the potential to result in a loss of information, 
in particular an inability to account for extreme events or 
conditions occurring at finer scales, and is a common chal-
lenge in balancing tradeoffs between model grain and extent 
(Newman  et  al. 2019). Complementary research at finer 
spatial scales will be important for further elucidating the 
mechanisms driving hotspots and the ways in which forests 
respond.
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