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Abstract. Promoting ecological resilience to increasing disturbance activity is a key man-
agement priority under warming climate. Across the Northern Hemisphere, tree mortality
from widespread bark beetle outbreaks raises concerns for how forest management can foster
resilience to future outbreaks. Density reduction (i.e., thinning) treatments can increase vigor
of remaining trees, but the longevity of treatment efficacy for reducing susceptibility to future
disturbance remains a key knowledge gap. Using one of the longest-running replicated experi-
ments in old-growth subalpine forests, we measured stand structure following a recent (early
2000s) severe mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak to examine the
legacy of historical (1940s) thinning treatments on two components of resilience. We asked:
‘How did historical thinning intensity affect (1) tree-scale survival probability and stand-scale
survival proportion (collectively “resistance” to outbreak) for susceptible trees (lodgepole pine
[Pinus contorta] ≥ 12 cm diameter) and (2) post-outbreak stand successional trajectories?’
Overall outbreak severity was high (MPB killed 59% of susceptible individuals and 78% of sus-
ceptible basal area), and historical thinning had little effect on tree-scale and stand-scale resis-
tance. Tree-scale survival probability decreased sharply with increasing tree diameter and did
not differ from the control (uncut stands) in the historical thinning treatments. Stand-scale
proportion of surviving susceptible trees and basal area did not differ from the control in his-
torically thinned stands, except for treatments that removed nearly all susceptible trees, in
which survival proportion approximately doubled. Despite limited effects on resistance to
MPB outbreak, the legacy of historical treatments shifted dominance from large-diameter to
small-diameter lodgepole pine by the time of outbreak, resulting in historically thinned stands
with ~2× greater post-outbreak live basal area than control stands. MPB-driven mortality of
large-diameter lodgepole pine in control stands and density-dependent mortality of small-
diameter trees in historically thinned stands led to convergence in post-outbreak live tree stand
structure. One exception was the heaviest historical thinning treatments (59–77% basal area
removed), for which sapling dominance of shade-tolerant, unsusceptible conifers was lower
than control stands. After six decades, thinning treatments have had minimal effect on resis-
tance to bark beetle outbreaks, but leave persistent legacies in shaping post-outbreak succes-
sional trajectories.

Key words: biotic disturbance; Dendroctonus ponderosae; disturbance interactions; forest management;
Fraser Experimental Forest, Colorado, USA; lodgepole pine; mountain pine beetle; Pinus contorta; resistance;
Rocky Mountains; successional trajectories.

INTRODUCTION

In temperate and boreal forests worldwide, distur-
bances (e.g., insect outbreaks, fires, and windstorms) are
integral to shaping ecosystem structure, composition,
and function (Turner 2010). However, climate-driven
increases in disturbance activity threaten ecosystem

services (Turner 2010, Seidl et al. 2016) and raise con-
cerns about forest function and persistence (Johnstone
et al. 2016, Seidl et al. 2017). Increases in the extent, fre-
quency, duration, and intensity of disturbances have
been observed or predicted for drought (Allen et al.
2010, Millar and Stephenson 2015), fire (Jolly et al.
2015, Westerling 2016), bark beetle outbreaks (Raffa
et al. 2008, Bentz et al. 2010), and pathogen activity
(Weed et al. 2013). Such shifts in disturbance regimes
may increase the likelihood of forests undergoing
changes in ecosystem state—including transition to non-
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forest—by altering regeneration success (Harvey et al.
2016, Stevens-Rumann et al. 2018, Turner et al. 2019,
Coop et al. 2020) or environmental conditions that
shape succession (McLauchlan et al. 2014, Johnstone
et al. 2016). Consequently, managing forests to maintain
structure and ecosystem services is a critical challenge.
A key priority of forest management facing a warming

climate and increasing disturbance activity is promoting
resilience, the capacity of a system to absorb distur-
bance, reorganize, and retain essentially the same struc-
ture and function after perturbation (Walker et al.
2004). One dimension of resilience to disturbance that is
a focus of ecosystem management is resistance, the abil-
ity of a system to remain unchanged when perturbed
(Gunderson 2000). Silvicultural treatments that reduce
stand density (e.g., thinning) and remove low-vigor trees
can promote resistance by bolstering the capacity of
remaining trees to withstand the stress of a subsequent
disturbance. At the tree scale, decreasing stand density
by removing low-vigor trees reduces resource competi-
tion, therefore increasing defensive capacity (Fettig et al.
2007) or reproductive capacity (Flathers et al. 2016) of
remaining trees. At the stand scale, alteration of struc-
ture (i.e., density, basal area, spatial arrangement) and
species composition can decrease stand susceptibility to
disturbances such as fire and bark beetle outbreaks by
reducing the number of susceptible trees remaining
(McIver et al. 2013, DeRose and Long 2014).
A second dimension of fostering resilience to distur-

bance is increasing the capacity of forests to return to
their pre-disturbance structure and function after
disturbance-driven changes occur. Silvicultural treat-
ments can alter post-disturbance responses by manipu-
lating structural and compositional legacies (i.e.,
individuals or biomass from the pre-disturbance ecosys-
tem that persist following a disturbance; Franklin et al.
2000, Johnstone et al. 2016). Such treatments can influ-
ence the effects of disturbance on subsequent stand
dynamics, including size and age distributions and spe-
cies dominance (DeRose and Long 2014). For instance,
treatments promoting the growth and reproduction of a
specific disturbance-resistant species can direct
post-disturbance stand successional trajectories toward
community dynamics less susceptible to that future
disturbance (Hood et al. 2016, Young et al. 2020). How-
ever, treatment effects can attenuate or amplify with time
following implementation and result in different out-
comes depending on the interval between treatment and
subsequent stress or disturbance (Reinhardt et al. 2008,
DeRose and Long 2014). Therefore, testing the effective-
ness and longevity of silvicultural treatments on forest
resilience to disturbance is an important knowledge gap.
Across the Northern Hemisphere, profound effects of

recent outbreaks of native bark beetles (Coleoptera:
Curculionidae: Scolytinae) in temperate forests (Kautz
et al. 2017) present a critical management context for
promoting forest resilience. Between the late 1990s and
mid-2000s, bark beetle outbreaks have caused extensive

tree mortality over tens of millions of hectares (ha) of
conifer forests in the USA (Meddens et al. 2012),
Canada (Kurz et al. 2008), and central Europe (Kautz
et al. 2011). In western North America, the majority of
tree mortality from these recent outbreaks is associated
with mountain pine beetles (MPB; Dendroctonus pon-
derosae) primarily attacking lodgepole pine (Pinus con-
torta var. latifolia) (Raffa et al. 2008, Kautz et al. 2017).
Bark beetle outbreaks are important drivers of many
components of forest function, including forest growth
and regeneration following overstory tree mortality
(Bentz et al. 2009), carbon sequestration (Hicke et al.
2012a), water and nutrient cycling (Mikkelson et al.
2013, Pugh and Gordon 2013), wood products (Weed
et al. 2013), and wildlife habitat (Saab et al. 2014). Fur-
thermore, spatial heterogeneity in stand structural con-
ditions created by outbreaks may persist for decades,
affecting future beetle infestations (Kashian et al. 2011,
Hart et al. 2015). Severe bark beetle outbreaks are natu-
ral disturbances that have been documented throughout
recent centuries (Baker and Veblen 1990, Jarvis and
Kulakowski 2015, Negrón and Huckaby 2020). How-
ever, future outbreak dynamics are expected to be
released from previous climatological constraints (Bentz
et al. 2010) as warmer and drier climate conditions can
drive rapid beetle reproduction and growth, decrease
cold-induced beetle mortality, and increase tree physio-
logical stress (Bentz et al. 2009). Therefore, exploring the
consequences of recent outbreaks on forest structure
and function and their likely changes in the future repre-
sents a key management priority (Morris et al. 2017).
Alteration of forest structure and composition

through thinning treatments is often considered as a
management strategy for increasing forest resilience to
bark beetle outbreak (Fettig and Hilszczański 2015), but
the longevity of treatment effectiveness remains uncer-
tain. Most studies examining the interaction between
different thinning strategies and forest response to bark
beetle outbreaks have been conducted post-outbreak
(e.g., salvage logging; see Collins et al. 2011, Donato
et al. 2013b, Griffin et al. 2013), during outbreak (Cole
et al. 1983, McGregor et al. 1987), or with short periods
(i.e., 5–25 yr) between treatment implementation and
outbreaks (Mitchell et al. 1983, Whitehead and Russo
2005, Temperli et al. 2014, Hood et al. 2016, Crotteau
et al. 2019). Studies of treatments implemented years to
decades prior to outbreaks have provided valuable
insights into treatment effectiveness but are limited in
temporal extent, particularly in the context of the typical
return interval of bark beetle outbreaks. For lodgepole
pine forests across western North America, MPB out-
break return intervals range from 20 to 130 yr (Cole and
Amman 1980, Taylor et al. 2006, Axelson et al. 2009,
Bentz et al. 2009, Alfaro et al. 2010, Jarvis and Kula-
kowski 2015). Simulation studies can project thinning
effects on forest dynamics into the future (Ager et al.
2007, Collins et al. 2011, 2012, Donato et al. 2013b, Pelz
et al. 2015), but empirical tests of the longevity of
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thinning treatments on promoting resilience to bark bee-
tle outbreaks remain largely unexplored.
Here, we tested the effects of historical stand-thinning

treatments on two components of forest resilience to
bark beetles: (1) resistance to outbreak and (2) post-
outbreak successional trajectories. Using a long-term
replicated experimental study of old-growth lodgepole
pine stands that were thinned in the mid-20th century
and subsequently affected by a severe MPB outbreak in
the early 21st century (~60 yr post-thinning), we asked
the following questions:

1) Do stand-thinning treatments increase resistance to
outbreaks, and does resistance differ across spatial
scales?

Specifically, what are the effects of historical thinning
intensity (removal of large-diameter trees) and timber
stand improvement (TSI; additional removal of low-
vigor small-diameter trees) on (a) tree-scale survival
probability of susceptible (dbh ≥ 12 cm) lodgepole pine,
and (b) stand-scale survival proportion of susceptible
lodgepole pine density and basal area?

2) Do stand-thinning treatments modify post-outbreak
stand successional trajectories?

Specifically, what are the effects of historical thinning
intensity and TSI on (a) pre- and post-outbreak live
stand structure (density, basal area, quadratic mean
diameter [QMD], and diameter distributions), and (b)
post-outbreak live late-seral species proportion across
size classes?
For Question 1, we expected historical thinning to

increase resistance to MPB compared with uncut (i.e.,
control) stands at both tree and stand spatial scales. At
the tree scale, resistance to beetle attack is affected by
individual tree diameter, age, and vigor (i.e., defensive
ability); larger diameter, older, and less vigorous trees
are generally more susceptible to attack due to beetle
preference for, and greater reproductive success in, hosts
with these qualities (Safranyik and Carrol 2006). There-
fore, we expected greater tree-scale resistance in histori-
cally thinned stands due to increases in vigor for
remaining trees via reduced resource competition. At the
stand scale, resistance to outbreak is influenced by stem
density, spatial heterogeneity, and suitable host abun-
dance; denser and more homogeneous stands dominated
by suitable hosts typically exhibit higher levels of beetle-
caused mortality (Fettig et al. 2007, Klutsch et al. 2009,
Nelson et al. 2014, Hood et al. 2016). Therefore, we
expected greater stand-scale resistance in historically
thinned stands due to reduction of susceptible lodgepole
pine density and basal area. At both scales, we expected
TSI to enhance effects of thinning on resistance due to
removal of additional susceptible trees and further
reductions in resource competition among remaining
trees.

For Question 2, we expected historical thinning to
modify post-outbreak stand successional trajectories.
Bark beetle outbreaks alter structural legacies by reduc-
ing live—and increasing dead—host tree basal area and
density (Diskin et al. 2011, Klutsch et al. 2011) and
shifting size and age distributions of host trees toward
smaller and younger classes (Kashian et al. 2011). There-
fore, we expected historically thinned stands to have
greater overall post-outbreak live density, basal area,
and QMD compared with uncut (i.e., control) stands
due to lower MPB-induced tree mortality in thinned
stands. Outbreaks also alter compositional legacies by
shifting dominance to non-host tree species and acceler-
ating successional trajectories toward late-seral commu-
nities (Diskin et al. 2011, Kayes and Tinker 2012).
Therefore, we expected that uncut stands would have
greater proportions of late-seral and shade-tolerant
Engelmann spruce (Picea engelmannii) and subalpine fir
(Abies lasiocarpa), representing an accelerated succes-
sional trajectory, based on greater assumed MPB-
induced pine mortality and subsequent release of non-
host species. Conversely, we expected historically
thinned stands to have slowed or reversed successional
trajectories toward dominance of early-seral lodgepole
pine. We expected TSI to enhance the expected effects of
thinning on post-outbreak structure and composition
due to the removal of additional trees and facilitation of
conditions favoring lodgepole pine growth and regenera-
tion (e.g., larger canopy gaps, reduced resource competi-
tion).

METHODS

Study area

The study was conducted at the Fraser Experimental
Forest, located on the Arapaho-Roosevelt National For-
est (Colorado, USA) in the southern Rocky Mountains
(39°530N, 105°530W). Established in 1937, the experi-
mental forest comprises 9,300 ha of subalpine forest
between 2,700 and 3,900 m elevation in a headwaters
watershed of the Colorado River system (Alexander
et al. 1985). Overstory vegetation within the area of the
study plots established following stand-replacing fire in
1685 (Bradford et al. 2008) and is characterized by
lodgepole pine seral to subalpine fir and Engelmann
spruce among scattered aspen (Populus tremuloides).
Understory vegetation is sparse, consisting of conifer
regeneration and shrubs including buffaloberry (Shep-
herdia canadensis) and whortleberry (Vaccinium spp.).
Soils are shallow and rocky, derived from gneiss and
schist (Huckaby and Moir 1998). The climate is temper-
ate, characterized by monthly (30-yr mean from 1981 to
2010) temperatures ranging from −7°C in January to
14°C in July, and an annual mean of 3°C (PRISM Cli-
mate Group 2012). Annual mean precipitation is
550 mm, with two-thirds of precipitation falling as snow
from October to May (PRISM Climate Group 2012).
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The study stands are broadly representative of lodgepole
pine/subalpine fir/Engelmann spruce subalpine mixed-
species forest communities in the North American
Rocky Mountains (Huckaby and Moir 1998).

Study design

Study stands are in >300-yr-old forest (Alexander
1954) where harvest-cutting units were established in
1938. Full details of the experiment have been described
by Wilm and Dunford (1948), but are summarized here
(Table 1). Four replicates of five different thinning
treatments were conducted on 2-ha (~142 × 142 m)
treatment units arranged in a block design (20 total
units; Appendix S1: Fig. S1). Each plot is surrounded
by a 19 m wide isolation strip (i.e., buffer of compara-
ble initial conditions that receive identical treatment to
mitigate edge effects from adjacent treatments; Curtis
and Marshall 2005). Prior to thinning in 1940, all units
were characterized by similar stand structure and spe-
cies composition: overstory trees with diameter at
breast height (dbh; measured 1.40 m above ground)
≥9 cm ranged in density from 741 to 988 stems/ha and
basal area from 33.6 to 38.2 m2/ha. Mean volume of
merchantable timber (i.e., stems with dbh ≥ 24 cm) was
70.0 m3/ha, ranging from 44.3 to 99.1 m3/ha. Thinning
treatments were defined by volume of merchantable
timber reserved (i.e., not removed): uncut control,
70.0 m3/ha (i.e., all merchantable volume reserved);
light thinning, 35.0 m3/ha; moderate thinning, 23.3 m3/
ha; heavy thinning, 11.7 m3/ha; and clearcut, 0 m3/ha
(i.e., no merchantable volume reserved). Immediately
following the main treatments, TSI treatments were
conducted on a random half of each thinned treatment
unit where dense groups of young saplings and “unde-
sirable” trees (e.g., malformed, diseased, low-vigor indi-
viduals) between 9 and 24 cm dbh were removed to
monitor effects on growth rate and stand structure
within the major treatments. Mean TSI tree removal
was 138 trees/ha, ranging from 72 to 287 trees/ha. All
trees were felled and cut by hand, and merchantable
logs were removed with horses. Resulting slash was scat-
tered over half of each treatment unit and swamper-
burned on the other half.
In 2003 (63 yr post-treatment), increasing MPB activity

was observed in the experimental forest (Tishmack et al.
2005), causing extensive mortality of lodgepole pine by
2006 (Hubbard et al. 2013) and continuing until a sharp
decline in new infestations in 2010 (Walter and Platt
2013). By 2011, MPB activity in the region had subsided
(Vorster et al. 2017), killing 90% of large diameter (dbh >
30 cm) and 10% of small diameter (dbh < 15 cm) lodge-
pole pine trees over the course of the outbreak (Rhoades
et al. 2013). Across the experimental forest, mortality
within stands was proportional to the abundance of
lodgepole pine, lower in young stands than mature stands,
and more closely tied to topographic factors favorable to

lodgepole pine (i.e., southerly aspects, lower elevations)
than stand age (Vorster et al. 2017).

Field data collection

In July through August 2018 (78 yr post-treatment
and ~8 yr post-outbreak) we measured post-outbreak
stand structure within 0.25 ha (50 × 50 m) plots located
in each thinning and TSI treatment combination
(Appendix S1: Fig. S1). For treatment units thinned
~60 yr prior to outbreak, plots were placed at the center
of each half of the 2-ha unit (one plot with TSI and the
other plot non-TSI). For uncut control units, plots were
placed in the center of the 2-ha unit as these units were
not split in half in the original study (i.e., no TSI was
performed). If necessary, plot locations were shifted
slightly to reduce confounding factors when conditions
in the center were not representative of the larger treat-
ment area (e.g., presence of old road, stream, or unchar-
acteristic topographic feature), maintaining a ≥5 m
buffer between plot and treatment unit boundaries (not
including the additional 19 m isolation strip). The total
number of replicate plots (n = 28) was distributed across
treatment categories as follows: control (n = 4), light+
TSI (n = 4), moderate (n = 3), moderate+TSI (n = 3),
heavy (n = 4), heavy+TSI (n = 4), clearcut (n = 3), and
clearcut+TSI (n = 3) (see Appendix S1: Table S1 for
details). Plots ranged in elevation from 2,799 to 2,999 m
and were positioned on northerly aspects with slopes of
5.6°–25.9°.
We measured stand structure (post-outbreak and

reconstructed pre-outbreak structure) within each plot
to assess MPB-induced tree mortality and post-outbreak
successional trajectories using established sampling
design protocols (Simard et al. 2011, Donato et al.
2013a). For overstory (dbh ≥ 12 cm) and midstory
(5 ≤ dbh < 12 cm) trees, we recorded species, dbh, and
signs of MPB attack (i.e., galleries, pitch tubes) for all
individuals (live or dead) rooted within three parallel
4 × 50 m belt transects oriented north–south at the
west, center, and east portion of each plot. For dead
trees, we also recorded status (standing or down) and
decay class (1–5, adapted from Lutes et al. [2006] for
snags and coarse woody debris). For saplings (dbh < 5 cm,
height ≥ 1.40 m) and seedlings (height 0.10–1.39 m), we
measured species, dbh (saplings only), height, and status
(live or dead) along three 2 × 25 m belt transects ori-
ented parallel (north–south) in the northwest and south-
east portions and perpendicular (east–west) in the
southwest portion of each plot. All measures were scaled
up to per-ha values.

Reconstructing pre-outbreak stand structure

Pre-outbreak (2004) stand structure was reconstructed
using decay status of measured trees, diameter growth
rates derived from repeat diameter measurements within
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the control units (Buonanduci et al. 2020), and pub-
lished height growth rates for seedling height growth
(Shepperd 1993, Romme et al. 2005, Pelz et al. 2018).
Overstory (dbh ≥ 12 cm) and midstory trees

(5 ≤ dbh < 12 cm) were considered live pre-outbreak if
they were live post-outbreak (2018) or dead post-
outbreak (snags or downed) with decay class ≤2 (i.e.,
loss of needles, small branches, and bark; Lutes et al.
2006). Dead trees with heavier signs of decay (decay
class >2) were considered to have died prior to the
outbreak due to slow wood decomposition rates (e.g.,
multiple decades to centuries) in high elevation lodge-
pole pine forests (Harvey 1986). To estimate and
assign pre-outbreak dbh of live trees, we used growth
rates (annual dbh increment) derived from repeat mea-
surements of tagged trees (dbh range 5.5–69.7 cm)
within the 2-ha control units in 2004 and 2018 (Buo-
nanduci et al. 2020) to develop species-specific models
describing growth as a function of dbh (Appendix S1:
Table S2). We used these growth rate models to assign
pre-outbreak dbh for all overstory and midstory trees
based on their 2018 dbh measurement. Trees dead in
2018 but considered live in 2004 (based on decay class)
were assigned a pre-outbreak dbh equal to their 2018
measurement.
All (live and dead) saplings (dbh < 5 cm, height ≥

1.40 m) measured in 2018 were considered live pre-
outbreak. All dead saplings were included to account for
uncertainty surrounding time of tree death. To deter-
mine pre-outbreak dbh of live trees, growth rates were
assigned using the models developed for overstory and
midstory trees. Saplings dead in 2018 were given a pre-
outbreak dbh equal to their 2018 measurement. Seed-
lings (height 0.10–1.39 m) were considered live pre-
outbreak if dead in 2018, or live and at least 0.10 m tall
prior to the outbreak. To determine pre-outbreak height

of live seedlings, we accounted for growth between 2004
and 2018 using published height measurements (Appen-
dix S1: Table S2). We subtracted these growth totals
from our 2018 measurements to determine which
observed live trees would have met our measurement
threshold (height ≥ 0.10 m) to be considered live pre-
outbreak.
To determine which lodgepole pine trees were suscep-

tible to MPB at the time of the outbreak, we identified
12 cm dbh as the size cutoff below which the trees were
not considered susceptible to attack. This cutoff is simi-
lar to published thresholds (e.g., 15 cm, Shore and
Safranyik 1992; 10 cm, Safranyik and Carrol 2006) and
accounted for 96% of observed MPB-killed trees in our
study. Overstory trees with pre-outbreak (2004) dbh ≥
12 cm that were live in 2018, or dead with signs of MPB
and decay class ≤2, were considered to be susceptible to
MPB. Based on growth rates, this included live trees with
post-outbreak (2018) dbh ≥ 14.4 cm. Decay class 3 dead
trees (i.e., most bark missing, limb stubs only, sapwood
sound) with signs of MPB represented 4% of observed
MPB-killed trees but were excluded from the susceptible
tree pool for consistency.

Statistical analysis

Q1—Testing effects of historical thinning intensity on
resistance at two spatial scales.—To test whether histori-
cal thinning affected resistance to MPB, we specified
generalized linear mixed effects models predicting sur-
vival of susceptible lodgepole pine at each spatial scale
(tree and stand). Models were designed to reflect the
study design using nested predictors: dbh within TSI
within major treatment. Block was included as a random
effect for each model to account for potential variations
in conditions across treatment blocks.

TABLE 1. Residual stand structure across treatment unit replicates following both thinning and subsequent timber stand
improvement (TSI) treatments in 1940.

Treatment

Reserve
volume†
(m3/ha)

Stem density‡
(stems/ha)

Basal area‡
(m2/ha)

Thinning method DescriptionMean (%) Mean (%)

Control 70.0 944 (100) 35.7 (100) Uncut No treatment
Light 35.0 558 (59) 21.0 (59) Initial step shelterwood

cutting
Best trees left remaining, necessarily included

many low-vigor trees
Moderate 23.3 413 (44) 14.9 (42) Heavy selection Remaining trees selected to ensure adequate

restocking and control number of seedlings
Heavy§ 11.7 502 (53) 14.7 (41) Scattered seed-tree cutting Most vigorous trees left remaining following

consideration of spacing, form, and defect;
no special attention to seed productive
capacity

Clearcut 0.0 341 (36) 8.3 (23) Full overstory removal No trees with dbh ≥ 24 cm left remaining,
regardless of species and vigor

Notes: Values are means and percent of uncut stands. Described by Wilm and Dunford (1948) and adapted from Alexander (1954).
† Includes trees with dbh ≥ 24 cm.
‡ Includes trees with dbh ≥ 9 cm.
§More stems in the heavy thinning treatment and nearly equal basal area compared with the moderate thinning plots is due to a

greater number of trees below merchantable size (dbh < 24 cm) occurring on the heavy thinning plots.
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1. Tree scale.—To test the effects of historical thinning
intensity on tree-scale survival probability for susceptible
individual lodgepole pine trees (i.e., resistance), we used
a logistic regression model. The binary response (killed
by MPB, 0 vs. survived, 1) was modeled using a Ber-
noulli distribution, and major treatment, TSI thinning,
and dbh terms were treated as nested fixed effects. Rela-
tive to the control, a positive coefficient would indicate
increased resistance (i.e., higher probability of survival),
and a negative coefficient would indicate reduced resis-
tance (i.e., lower probability of survival).

2. Stand scale.—To test the effects of historical thinning
intensity on stand-scale survival proportion of
susceptible lodgepole pine density and live basal area
(i.e., resistance), we used beta regression models. The
proportional response (0, 1) was modeled using a beta
distribution, and major treatment and TSI thinning
terms were treated as nested fixed effects. Relative to the
control, a positive coefficient would indicate a increased
resistance (i.e., higher survival proportion of susceptible-
sized lodgepole pine density/basal area), and a negative
coefficient reduced resistance (i.e., lower survival pro-
portion of susceptible-sized lodgepole pine density/basal
area).

Q2—Testing effects of historical thinning intensity on
post-outbreak successional trajectories.—To test the
effects of historical thinning on post-outbreak stand-
scale successional trajectories, we examined live stand
structure and the late-seral component across the differ-
ent treatments.

1. Live stand structure.—To test differences in overall
stand structure between historical thinning treatments
and the control, we used generalized linear mixed effects
models to compare pre-outbreak (2004) and post-
outbreak (2018) mean live stem density (overstory,
dbh ≥ 12 cm; midstory, 5 ≤ dbh < 12 cm; sapling,
dbh < 5 cm; and seedling, height < 1.40 m), basal area,
and QMD across treatments. Density was modeled using
a negative binomial distribution and basal area and
QMD were modeled using gamma distributions. Major
treatment and TSI thinning terms were treated as nested
fixed effects. To assess differences in size structures
among treatments, we estimated diameter distributions
for all live trees (height ≥ 1.40 m) pre-outbreak and
post-outbreak by treatment, using smoothed kernel den-
sity estimation for display. Changes in the shape of
diameter distributions as a function of thinning and/or
outbreak were assessed among treatments (thinning
treatments vs. control for both pre-outbreak and post-
outbreak periods) and within treatments (post-outbreak
vs. pre-outbreak for each treatment). To statistically
compare distributions, we used two complementary
approaches: a two-sample Kolmogorov–Smirnov (K-S)
test (Smirnov 1939) and a departure index. The K-S test

robustly detects a difference between distributions but
does not describe information of ecological relevance,
such as the direction (right [larger] vs. left [smaller]
shift), magnitude (extent), or location (position on hori-
zontal axis) of the difference. To supplement this, we cal-
culated a departure index,M (Menning et al. 2007):

M ¼ 2
k � 1

� �
∑
k

i¼1

f̂ i
nf̂

� f i
n f

 !
k þ 1� ið Þ

" #

where k is the number of bins (i.e., dbh size classes, 1 cm
wide), fi is the count of trees in bin i, nf is the total num-
ber of trees in the test distribution (i.e., thinning treat-
ments [among-treatment change], post-outbreak
[within-treatment change]), and f̂ i and nf̂ represent these
values for the reference distribution (i.e., control
[among], pre-outbreak [within]). Sign and magnitude of
M indicate the direction (negative, left-shifted; positive,
right-shifted) and distance of shift in the test distribution
compared with the reference distribution. Minimum and
maximum values of M indicate the range endpoints in
the departure index, determined by the symmetry of the
reference distribution (−1 to +1 for normal or uniform
distributions; absolute range of 2 for all distributions),
and provide information on the location of difference.
This index is well behaved, standardized, and insensitive
to the number of bins in a histogram (Menning et al.
2007).

2. Late-seral component.—To account for the domi-
nance of lodgepole pine on distribution trends, we also
examined the influence of historical thinning on struc-
ture of the late-seral, shade-tolerant conifer species com-
ponent within each stand. We combined observations of
subalpine fir and Engelmann spruce (referred to as
spruce–fir) to represent the late-seral species component.
We compared the spruce–fir proportion of the post-
outbreak (2018) total live stem density and basal area by
size class (all, overstory, midstory, sapling, and seedling)
across treatments using mixed effects beta regression
models. The proportional response (0, 1) was modeled
using a beta distribution with major treatment and TSI
thinning terms treated as nested fixed effects. Relative to
the control, a positive coefficient would indicate a shift
toward late-seral structure (i.e., higher spruce–fir pro-
portion of density or basal area), and a negative coeffi-
cient would indicate a shift toward early-seral structure
(i.e., lower spruce–fir proportion of density or basal
area).
We report individual P-values for all statistical tests,

and interpret significance via strength of evidence of a
difference based on the following α-levels: strong
(P < 0.01), moderate (P < 0.05), and suggestive evi-
dence (P < 0.1). We used this approach to reduce the
risk of missing ecologically significant effects due to our
modest sample size (i.e., type II error). Analyses were
conducted in R (R Core Team 2020) using packages
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lme4 (Bates et al. 2015) and glmmTMB (Brooks et al.
2017) for model fitting, and jtools (Long 2020) for model
visualization.

RESULTS

Across all stands, 59% (515 of 874) of stems and 78%
of basal area of susceptible lodgepole pine trees were
killed by MPB in the recent outbreak. MPB-killed sus-
ceptible lodgepole pine trees ranged in diameter from
12.0 to 47.8 cm (mean = 24.3, median = 23.3) and were
generally smaller in diameter in historically thinned
treatments than the control. Surviving susceptible lodge-
pole pine trees ranged in diameter from 12.0 to 36.6 cm
(mean = 15.9, median = 14.9) and were similar in diam-
eter across treatments (Appendix S1: Table S3).

Historical treatment effects on resistance

Overall, we found little evidence of a legacy effect of
historical thinning increasing resistance of susceptible
lodgepole pine to the recent MPB outbreak at either
scale tested. At the individual tree scale, tree diameter
(dbh) was the strongest predictor of survival, having a
strong negative effect across all treatments (P < 0.001;
Fig. 1a). Regardless of historical treatment in the stand
within which a tree existed, probability of survival for
susceptible lodgepole pine trees declined with increasing
dbh and did not differ from the control in any treatment
(P = 0.103–0.891; Fig. 1b). Across treatments, mean
predicted survival probability was <50% for trees larger
than 18 cm dbh, <10% for trees larger than 26 cm dbh,
and <1% for trees larger than 35 cm dbh (Fig. 1a).
At the stand scale, with the exception of treatments

with the highest thinning intensities (heavy+TSI or
clearcut treatments), we found no evidence that histori-
cal thinning had an effect on resistance to MPB out-
break. Survival proportion for susceptible trees by
density was greater than the control (~30%) only within
the heavy+TSI (~55%, P = 0.064) and clearcut (~60%,
P = 0.022) thinning treatments (Fig. 2). For basal area,
effects were similar: survival proportion was greater than
the control (~20%) for the heavy+TSI (~35%,
P = 0.036), clearcut (~50%, P = 0.003), and clearcut
+TSI (~35%, P = 0.051) thinning treatments (Fig. 2).
For both analyses, there was no evidence of an addi-
tional effect of TSI within the main treatment. One
exception was for the heavy treatment where the survival
proportion by both stem density and basal area were 15–
25% greater in the heavy treatment with TSI (~55% and
~35%, respectively) than without TSI (~30% and ~20%,
respectively) (P = 0.060; Fig. 2).

Historical treatment effects on pre- and post-outbreak
successional trajectories

Pre-outbreak.—Overall, we found strong evidence that
the legacy of historical thinning treatments persisted for

~60 yr until the beginning of the MPB outbreak, and
that these treatments modified post-outbreak stand suc-
cessional trajectories. Prior to the MPB outbreak, over-
all live stand structure and diameter distributions
differed among historically thinned and uncut stands.
Historically thinned stands generally had greater pre-
outbreak (2004) live midstory (5 ≤ dbh < 12 cm;
P ≤ 0.001) and sapling stem densities (dbh < 5 cm;
P = 0.001–0.033) than the control for all species com-
bined, primarily driven by lodgepole pine (Fig. 3a,
Table 2). Pre-outbreak live overstory (dbh ≥ 12 cm;
P = 0.099–0.811) and seedling (height < 1.4 m;
P = 0.101–0.963) densities were similar between most
historically thinned and uncut stands (Table 2). Pre-
outbreak live basal area was also similar for most treat-
ments for all species combined (P = 0.016–0.943; Fig. 4
a) and individually (P = 0.029–0.904; Fig. 4c), although
the relative sizes of contributing trees differed among
thinned and uncut stands. Pre-outbreak live QMD was
~33% lower in historically thinned stands than the con-
trol for all species combined (P = 0.003; Fig. 4e). Trends
in pre-outbreak live QMD were largely driven by a
reduction in QMD for lodgepole pine in the heaviest his-
torical thinning treatments while there were no consis-
tent trends for either late-seral species (Fig. 4g). Aspen
was absent or sparsely represented in all treatments, with
the exception of clearcut stands in which it was still a
minor component compared with the conifer species
(Table 2). Shapes of pre-outbreak total live tree diameter
distributions in historically thinned stands were left-
shifted (i.e., fewer large and more small trees) compared
with the control (P < 0.001; Fig. 3a). Shifts were domi-
nated by lodgepole pine and differed from the control
with similar magnitudes across levels of historical thin-
ning (Fig. 3a).

Post-outbreak.—From pre- to post-outbreak, some dif-
ferences in overall live stand structure between histori-
cally thinned stands and control stands either persisted
or emerged, while differences in the shape of live diame-
ter distributions were diminished. Most historically
thinned stands had greater post-outbreak (2018) live
overstory (P ≤ 0.001–0.162), midstory (P ≤ 0.001–
0.148), and sapling (P = 0.023–0.299) stem density than
the control for all species combined, driven by lodgepole
pine (Fig. 3b, Table 2). Post-outbreak live seedling stem
density was similar between historically thinned and
uncut stands across species (P = 0.205–0.798; Table 2).
Unlike pre-outbreak stand structure (Fig. 4a), post-
outbreak live basal area was ~2–3 times greater in histor-
ically thinned stands than in the control for all species
combined (P ≤ 0.001–0.027; Fig. 4b). These differences
were, in part, driven by greater post-outbreak lodgepole
pine basal area in heavier historical thinning treatments
relative to the control (Fig. 4d) and by greater post-
outbreak subalpine fir basal area in the lighter historical
thinning treatments relative to the control (Fig. 4d). In
contrast, post-outbreak live tree QMD did not differ
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between historically thinned stands and the control for
all species combined (P = 0.213–0.993; Fig. 4f)—the net
result of greater QMD for both late-seral conifer species
and lower QMD for lodgepole pine across multiple his-
torically thinned treatments compared with the control
(Fig. 4h). Whereas total live tree density differed among
thinned and uncut stands (Table 2), the shapes of post-
outbreak live tree diameter distributions in historically
thinned stands (excluding moderate; P = 0.029) were
similar to the control for all species combined
(P = 0.190–0.760; Fig. 3b). Species-specific post-
outbreak live tree distributions were similar to the
control for most historically thinned stands, although
leftward shifts in lodgepole pine and rightward shifts in
late-seral conifers were evident for some treatments
(Appendix S1: Table S7).
Live stand structure changed from pre-outbreak to

post-outbreak in all stands. Across all treatments, pro-
portional change in total live density was negative for
overstory, midstory, and sapling trees, and positive for
seedlings (Table 2). The greatest proportional change in
total live density occurred in saplings for historically
thinned stands (16–40% decrease) and in overstory trees

for the control (57% decrease; Table 2). Density changes
in overstory trees differed in direction between lodgepole
pine (negative) and late-seral conifers (positive), while
change in saplings (negative) and seedlings (positive)
was consistent across all species (Table 2).
Post-outbreak total live tree diameter distributions

differed (P ≤ 0.004) in shape from pre-outbreak distri-
butions for all stands except moderate thinning
(P = 0.260; Fig. 3c). Compared with the control, histori-
cally thinned stands showed lower magnitudes of change
in the shapes of total tree diameter distributions, and
most (excluding light+TSI and heavy) differed in direc-
tion of change from the control (Fig. 3c). Post-outbreak
total live tree diameter distributions in historically
thinned stands had fewer small and more large trees
than before the outbreak (rightward shift due to tree
growth), while post-outbreak distributions in control
stands had more small and fewer large trees than before
the outbreak (leftward shift due to mortality). Shifts
were dominated by lodgepole pine; all stands, exclusive
of clearcut+TSI, had leftward shifts in diameter distri-
butions of live lodgepole pine trees, although the magni-
tude of change was lower in historically thinned stands
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FIG. 1. Modeled effects of tree diameter and thinning intensity on tree-scale survival probability for susceptible lodgepole pine
trees (pre-outbreak dbh ≥ 12 cm). (a) Predicted overall effect of diameter on survival probability. Semi-transparent points are indi-
vidual observations of tree survival (1) or mortality (0). Gray lines are predicted mean response for each individual thinning treat-
ment with shaded 95% confidence intervals. Red line isolates the overall mean effect of diameter across treatment responses. (b)
Effects of thinning treatment intensity on survival probability at discrete diameter values (distributed evenly across the observed
range). Treatments increase in level of thinning from left to right (Ctrl, control; Low, light; Mod, moderate; Hi, heavy; Cc, clearcut).
Circles are predicted probabilities with 95% confidence intervals. Closed circles are thinning plus timber stand improvement (TSI),
and open circles are thinning treatments without TSI. See Appendix S1: Table S4 for model output.
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compared with the control (Appendix S1: Table S7). All
stands were characterized by a reduction in live suscepti-
ble diameter (dbh ≥ 12 cm, gray dashed line) lodgepole
pine compared with pre-outbreak (Fig. 3c). Change in
the diameter distribution of lodgepole pine in the control
was dominated by mortality of these susceptible trees,
whereas change in the thinned treatments was domi-
nated by mortality of trees in smaller diameter size
classes (dbh < 12 cm; Fig. 3c). Diameter distributions
of live late-seral conifer species were right-shifted for
most stands following the outbreak, with clearcut and
clearcut+TSI treatments showing the greatest magni-
tudes of change (Appendix S1: Table S7). Aspen diame-
ter distributions displayed right shifts for both clearcut
treatments (Appendix S1: Table S7).
Historical thinning had little effect on post-outbreak

dominance of late-seral species relative to overall com-
position. Post-outbreak spruce–fir proportion of live
stem density and basal area did not differ from the con-
trol (P = 0.159–0.990), except in treatments with the
highest thinning intensities (heavy, heavy+TSI, clearcut
+TSI; P = 0.004–0.037), in which the relative domi-
nance of spruce–fir saplings was ~50% lower (Fig. 5).
For density and basal area, we found no evidence of an
additional effect of TSI (P = 0.217–0.985; Fig. 5).

DISCUSSION

Understanding the legacy of past management actions
on forest resilience to disturbance is important as distur-
bance activity increases with warming climate. Long-

term experimental studies that allow for testing the
effects of past management are rare, but offer critical
insight into the longevity of management treatments. By
exploring the effects of thinning on forest resilience to
bark beetle outbreak over a temporal scale comparable
with a typical outbreak return interval, our study
addresses key research priorities for managing bark bee-
tle impacts on forest ecosystems (Morris et al. 2017).
Our finding that historical thinning treatments had a
limited dampening effect on the severity of a MPB beetle
outbreak ~60 yr later highlights challenges with promot-
ing long-term resistance to disturbance. However, the
effects of historical thinning treatments on directing
post-outbreak stand trajectories provide important
insights for informing forest management decisions in
the face of increasing potential for bark beetle out-
breaks.

Historical stand-thinning treatments fostered little to no
resistance to MPB outbreak

Counter to our expectations, we found limited sup-
port for increased tree-scale resistance following thin-
ning ~60 yr prior to outbreak, highlighting the
importance of individual tree size in regulating resis-
tance to MPB. MPB exhibit strong preference for larger
trees (Björklund and Lindgren 2009) due to the positive
relationship between tree diameter and phloem thick-
ness. Thicker phloem allows greater MPB brood pro-
duction, reduced larval intraspecific competition, and
faster beetle development (Amman and Cole 1983).
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FIG. 2. Predicted effects of thinning intensity on stand-scale survival proportion of stem density (left) and basal area (right) for
susceptible lodgepole pine (pre-outbreak dbh ≥ 12 cm). Treatments increase in level of thinning from left to right (Ctrl, control;
Low, light; Mod, moderate; Hi, heavy; Cc, clearcut). Gray points are observed survival proportion for each plot replicate. Black cir-
cles are predicted mean proportions with 95% confidence intervals. Confidence intervals reflect only the variance of the fixed effects.
Closed circles are thinning plus timber stand improvement (TSI), and open circles are thinning treatments without TSI. Asterisks
indicate strength of evidence of a difference from the control according to P < α = 0.01** (strong), 0.05* (moderate), 0.1+ (sugges-
tive). Brackets correspond to differences between main thinning treatments with and without TSI. See Appendix S1: Table S5 for
model output.
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Our modeled probabilities of survival were similar to
other studies that documented low (<50%) susceptibil-
ity to MPB attack for trees below 20 cm dbh and high

(near 100%) susceptibility above 30 cm dbh (Roe and
Amman 1970, Negrón 2019, Buonanduci et al. 2020).
For trees of intermediate diameter (15–25 cm dbh),
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pre-outbreak growth rate and stand structure (density
and host species proportion) at the tree neighborhood
scale (i.e., 10 m radius from tree) can mediate tree-scale
susceptibility to MPB outbreak (Buonanduci et al.
2020). We saw greater variability in survival probability
within and among treatments for intermediate diameter
trees (Fig. 1b) but found no significant differences
among treatments. Therefore, potential thinning effects
of increased vigor leading to greater tree-level resis-
tance to MPB outbreak had eroded following >60 yr of
stand development.
Limited support for differences in stand-scale resis-

tance of susceptible lodgepole pine (density and basal
area) to MPB between uncut and historically thinned
stands suggested that the efficacy of thinning treatments
can fade over multiple decades as the stands regrow. For
example, intense thinning (total overstory removal; e.g.,
clearcut treatments) 1–25 yr prior to an outbreak has
been effective at reducing MPB-caused tree mortality in
stands of lodgepole pine (Cole et al. 1983, Vorster et al.
2017) and ponderosa pine (Pinus ponderosa) (Schmid
and Mata 1992, Hood et al. 2016). In addition, less
intense thinning (partial overstory removal; e.g., light,
moderate, and heavy treatments) has been effective when
conducted during (McGregor et al. 1987) or shortly
prior to (8–10 yr; Whitehead and Russo 2005) an out-
break. Over longer time periods, partial overstory
removal may be ineffective at increasing resistance due
to stimulation of growth releases that allow remaining
trees to reach susceptible diameters and come under
stress due to competition with each other sooner than
more heavily thinned stands (Mitchell et al. 1983). In
addition to treatment timing relative to outbreaks, our
finding of a stand-scale effect only in treatments that
approximated a clearcut suggests a threshold of thinning
intensity needed to foster MPB outbreak resistance. Pre-
outbreak, the heaviest historical treatments in our study
were the only stands below suggested thresholds for
MPB outbreak resistance (Mata et al. 2003, Williams
et al. 2018, Negrón 2019), with mean diameters of sus-
ceptible lodgepole pine trees smaller than 20 cm and
no trees exceeding 40 cm diameter (Appendix S1:
Table S3).
While perceived as a minor treatment in the 1940s,

implementing TSI (removal of small-diameter trees after
the main thinning treatment) may have important impli-
cations for amplifying or extending the longevity of
treatment effects six decades later. In some cases, the
effect of TSI was as strong as the overall thinning treat-
ment, which focused on overstory trees. For example,
60 yr after implementation, the heavy thinning treat-
ment without TSI (Fig. 6b) more closely resembled the
control treatment (Fig. 6a) in pre-outbreak live stand
structure and resistance to MPB outbreak, whereas the
heavy thinning treatment with TSI (Fig. 6c) more closely
resembled the clearcut treatment (Fig. 6d). The removal
of some 9–24 cm dbh trees ~60 yr prior to outbreak,
which were likely to be lodgepole pine based on standT
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development at time of treatment, resulted in a reduction
of susceptible lodgepole pine trees for the recent
outbreak. By thinning from below (i.e., removal of
lower-canopy trees), TSI may enhance the effects of
microclimate, tree vigor, and intertree spacing on reduc-
ing susceptibility of stands (Whitehead and Russo 2005,
Coops et al. 2008, Fettig and Hilszczański 2015).

Historical stand-thinning treatments altered
post-outbreak successional trajectories

Strong legacies of the 1940s treatments persisted for
60 yr until the start of the outbreak in the early 2000s.
Overall, the strongest effects of historical thinning on
pre-outbreak live stand structure were seen for lodgepole
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FIG. 4. Predicted effects of thinning intensity on stand-scale pre-outbreak (2004) and post-outbreak (2018) live basal area (a–d)
and quadratic mean diameter (QMD, e–h) for all trees combined (a–b, e–f) and by individual species (c–d, g–h). Treatments increase
in level of thinning from left to right (Ctrl, control; Low, light; Mod, moderate; Hi, heavy; Cc, clearcut). Semi-transparent points
are observed mean values for each plot replicate. Opaque circles are predicted means with 95% confidence intervals. Closed circles
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of evidence of a difference from the control according to P < α = 0.01** (strong), 0.05* (moderate), 0.1+ (suggestive). See Appen-
dix S1: Table S8 for model output.
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pine. This can be ascribed to stand age (~250 yr) at the
time of thinning, at which stage merchantable-sized
lodgepole pine was dominant and therefore the species
most commonly removed (Wilm and Dunford 1948).

However, the MPB outbreak acted as a strong filter on
diameter distributions and drove post-outbreak conver-
gence in most live tree components of historically
thinned and uncut stands. That is, most pre-outbreak
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differences in the shape of live diameter distributions
between historically thinned and control stands were
diminished, although mechanisms of change varied. Our
findings are consistent with shifts toward convergence in
tree diameter and basal area among unharvested stands
post-outbreak (Nelson et al. 2014), although we show
that this can happen in harvested stands as well. Lodge-
pole pine distributions were shifted to the left (i.e., fewer
large trees) while late-seral, non-MPB host species distri-
butions were shifted to the right (i.e., more large trees),
corresponding to dynamics controlling MPB behavior:
beetle preference for large host trees and growth release
of non-host species (Crotteau et al. 2019). Live diameter
distributions changed following the outbreak for all
stands, although the direction and dominant driver of
change varied between historically thinned and control
stands. Stands that were uncut or historically thinned at
a lower intensity had left shifts in total diameter distri-
butions following the outbreak (i.e., fewer large trees,
mainly lodgepole pine), whereas the heavily thinned
stands were shifted to the right (i.e., more large trees,
mainly spruce and fir). This is likely to be from the dom-
inance of MPB-induced mortality of large-diameter trees
in uncut and lower intensity historically thinned stands,
compared with the dominance of density-dependent
mortality of small-diameter trees in historically heavily
thinned stands.
Despite having little effect on stand-scale resistance of

the susceptible tree population to MPB, legacies of his-
torical thinning on the non-susceptible tree population
strongly affected trajectories of post-outbreak live stand
structure. At the stand scale, the greater the number of
susceptible individuals removed from the population by
the 1940s treatments, the less vulnerable the stand was to
outbreak-induced changes in live density, basal area,
and QMD. That is, the smaller the trees at the time of

outbreak (i.e., the more heavily the stands were thinned
historically), the less change resulted from the outbreak.
Relative to pre-outbreak, the lower post-outbreak live
overstory, midstory, and sapling density, greater live
seedling density, and lower live basal area we found are
dynamics typical of MPB outbreaks in similar forests
(Nelson et al. 2014, Perovich and Sibold 2016). However,
compared with uncut stands, the magnitude of total
change in these attributes of stand structure was less in
historically thinned stands. These findings supported
similar trends of lower MPB-induced tree mortality in
thinned ponderosa pine stands when fewer susceptible
individuals are present (Hood et al. 2016). Our finding
of greater aspen density in clearcut treatments following
the MPB outbreak supported the understanding that
multiple severe disturbances favor regeneration of spe-
cies with resprouting capabilities (Kulakowski et al.
2013, Pelz and Smith 2013, Hansen et al. 2016).
Contrary to our expectation, we found limited evi-

dence to support our hypothesis that uncut stands
would have accelerated successional trajectories post-
outbreak compared with historically thinned stands. In
mixed-species stands, MPB outbreaks shift forest
structure toward greater diversity in species composi-
tion (Perovich and Sibold 2016, Pappas et al. 2020).
Our findings in control stands supported this general
trend, with decreases in live overstory density and
basal area of lodgepole pine, increases in live under-
story density of all tree species, and an increase in live
basal area of subalpine fir. However, as only the heavi-
est thinning treatments exhibited lower post-outbreak
spruce–fir proportions of live stem density and basal
area compared with the control, our findings suggest
that thinning ~60 yr prior to outbreak had little effect
on relative dominance of late-seral species in 2018.
One explanation is that only the heaviest historical

FIG. 6. Representative photographs of stand structure in uncut and thinned treatments post (2018) mountain pine beetle (Den-
droctonus ponderosae) outbreak (2004) in subalpine lodgepole pine (Pinus contorta var. latifolia) forests of the Fraser Experimental
Forest, Colorado, USA. Treatments were conducted in 1940 (~60 yr prior to outbreak) and ranged from uncut control (a), to clearcut
(d; removal of all trees with dbh ≥ 24 cm). Differences in structure as a result of timber stand improvement (TSI) are illustrated by
the heavy treatment without TSI (b) and with TSI (c). Note the differences in abundance and spatial arrangement of live and dead
vegetation, gap openings, and species composition among the different thinning treatments. Credit: J.E. Morris.
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thinning treatments created initial conditions (i.e., lar-
ger canopy gaps, more light) that favored regeneration
of lodgepole pine over spruce or fir (Lotan and Perry
1983). Within the heaviest treatments, we found evi-
dence of lower spruce–fir proportions of live stem den-
sity and basal area only within the sapling size class
(dbh < 5 cm, established prior to outbreak). This may
be due to the timing of our measurement post-
outbreak (~8 yr) compared with the temporal scale
over which successional dynamics operate (decades to
centuries). Simulations based on post-outbreak regen-
eration suggest live basal area and density return to
pre-outbreak levels in uncut and thinned stands within
80–105 yr, respectively; lodgepole pine remains the
dominant overstory species in thinned stands for 100–
150 yr post-outbreak, while subalpine fir becomes
dominant in uncut stands (Collins et al. 2011). There-
fore, regeneration of understory lodgepole pine trees
following thinning in 1940 may only have had enough
time to be evident in the sapling size class, whereas suc-
cessional dynamics stimulated by the MPB outbreak
are still developing. As post-outbreak stands continue
to grow and regenerate, differences in live spruce–fir
proportions among thinned and uncut stands in other
size classes may emerge.

Management implications and directions for future
research

Our findings have key implications for management of
subalpine forests and point to several areas for future
research. Little to no effect of thinning ~60 yr prior to
outbreak on resistance of susceptible-sized trees to MPB
suggests that maintaining long-term resistance to out-
break requires repeated heavy treatments (Mata et al.
2003, Ager et al. 2007). To keep susceptible basal area
below a resistance threshold (~28 m2/ha; Mata et al.
2003), stands may need thinning at frequencies resem-
bling the lower range of the outbreak return interval
(~25 yr; Mata et al. 2003) or at intensities approximating
total overstory removal (although see Ager et al. 2007).
Spatial scale and arrangement of treatments are also
important for building stand resistance to MPB out-
break. Thinning can reduce tree mortality from MPB
when conducted in small patches (0.1–7.0 ha; Johnson
et al. 2014) and across large areas (10 ha; Negrón et al.
2017), but effectiveness may be reduced if thinned stands
are surrounded by dense susceptible stands (Schmid and
Mata 2005, Johnson et al. 2014). At watershed and
regional scales, increasing spatial heterogeneity in size
classes and host species abundance may impede out-
break spread (Chapman et al. 2012, DeRose and Long
2014, Nelson et al. 2014). However, broad-scale manage-
ment operations are costly and unfeasible across the spa-
tial extent of severe bark beetle outbreaks (DeRose and
Long 2014). Incorporating our findings into simulation
models could test possible effects of historical treatments
across broader areas impacted by MPB, which could

provide insight into the spatial scale necessary for thinning
to have a lasting effect on resistance.
Historical treatment legacies on post-outbreak stand

structure and species composition—another component
of resilience to MPB—suggest that thinning has implica-
tions for managing long-term stand successional trajec-
tories. Increasing forest resistance to bark beetle
outbreaks at the stand scale through intense thinning
treatments may buy time in the short term, but eventu-
ally stands will again become susceptible to outbreaks
(DeRose and Long 2014). Although clearcut and hea-
vy+TSI treatments in our study were resistant to the
recent (2000s) MPB outbreak, they are now character-
ized by relatively homogeneous composition that favors
host species (e.g., greater basal area and density of live
lodgepole pine trees) (Ager et al. 2007, Chapman et al.
2012). As such, they are likely to be susceptible to future
(e.g., 2–3 decades later) MPB outbreaks sooner than
uncut stands (Collins et al. 2011). However, greater
potential in uncut stands for spruce and fir to replace
lodgepole pine as the dominant species (Collins et al.
2011) may impact future susceptibility to other bark bee-
tle outbreaks (e.g., spruce beetle [Dendroctonus rufipen-
nis], western balsam bark beetle [Dryocoetes confusus]).
Greater dominance by spruce and fir may also reduce
the adaptability of stands to climate change due to lower
drought tolerance (Perovich and Sibold 2016). Simulat-
ing post-outbreak dynamics further into the future could
provide insights into thinning legacies that may emerge
over longer time scales and allow managers to evaluate
treatment efficacy under changing climate conditions.
Managing stands for resilience to MPB is likely to

carry unintended consequences for the resilience of other
components of stand structure and function. For
instance, tree mortality from bark beetle outbreaks can
adversely impact recreational safety, property values,
and available harvestable timber (Flint et al. 2009), but
can also support biodiversity (Winter et al. 2015), pro-
vide wildlife habitat via snags and downed wood (Saab
et al. 2014), and facilitate biogeochemical cycling
(Mikkelson et al. 2013). Therefore by removing poten-
tially susceptible trees, thinning limits the recruitment of
large snags and coarse woody debris, which can reduce
post-outbreak wildlife habitat and total aboveground
carbon storage (Donato et al. 2013b). Partial thinning
may also increase stand vulnerability to windthrow
(Alexander 1954, 1974). Furthermore, frequent thinning
of subalpine forests at high intensity would, in many
cases, represent a fundamental departure from the natu-
ral range of variability in stand structure, which is driven
by relatively infrequent and severe disturbances (Peet
2000). Thinning and outbreaks also alter fuel profiles
(i.e., abundance and spatial arrangement of biomass) in
ways that interact with fire behavior (Jenkins et al. 2008,
Simard et al. 2011, Collins et al. 2012, Hicke et al.
2012b), fire effects (Harvey et al. 2014a, b), and firefight-
ing operations (Jenkins et al. 2012). Therefore, it is
important to consider thinning for resilience to MPB

Article e02474; page 16 JENNA E. MORRIS ETAL.
Ecological Applications

Vol. 32, No. 1



outbreak within the context of potential tradeoffs or
synergies with other management goals (Fettig and Hil-
szczański 2015).

CONCLUSION

Promoting forest resilience to disturbance is an impor-
tant priority for ecosystem management, with challenges
arising in the context of global change and increasing
disturbance activity. Historical silvicultural treatments
followed by subsequent disturbance present an opportu-
nity to empirically test hypotheses about fostering resili-
ence of forests to future disturbances (Temperli et al.
2014, Hood et al. 2016, Crotteau et al. 2019) and address
key uncertainties surrounding the longevity of treatment
effects with respect to the typical disturbance return
interval. We found that thinning treatments applied
~60 yr prior to a beetle outbreak were largely ineffective
at increasing tree-scale resistance of susceptible-sized
lodgepole pine to MPB, and only heavy thinning treat-
ments (e.g., near or total overstory tree removal) pro-
moted stand-scale resistance to MPB. Pre-outbreak
differences in the shape of diameter distributions
between thinned and uncut treatments were diminished
by the MPB outbreak. However, historical thinning had
lasting effects on post-outbreak successional trajectories,
shifting understory sapling dominance toward early-
seral lodgepole pine. Our findings highlight that manag-
ing for resistance against disturbances such as bark bee-
tle outbreaks may be challenging, but treatments can
have lasting effects on other components of resilience to
disturbance.
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